IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14135-d1246742.html
   My bibliography  Save this article

Assessing the Cross-Sectoral Economic–Energy–Environmental Impacts of Electric-Vehicle Promotion in Taiwan

Author

Listed:
  • Chi-Hao Chen

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Yun-Hsun Huang

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Jung-Hua Wu

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Hwa Lin

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
    Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan)

Abstract

Few studies have examined the cross-sectoral impacts of electric vehicles on the economy, energy, and the environment. This study adopted hybrid electric vehicles, plug-in hybrid electric vehicles, and pure-battery electric vehicles as research objects in establishing an input–output analysis framework of the electric-vehicle industry. Learning curves and scenario analysis were also used to explore the cross-sectoral economic–energy–environmental impacts of electric-vehicle promotion, using Taiwan as a case study. Our results indicated that by 2040, electric vehicles will create an output value of 157~186.7 billion NTD, while boosting employment and reducing energy expenditures but having a negligible impact on income. It is expected that by 2040, the adoption of electric vehicles will reduce energy consumption to 65~82% of the levels required for vehicles using internal-combustion engines. Electric vehicles are expected to reduce CO 2 and NO X emissions but increase PM2.5 emissions, with little effect on SO X emissions.

Suggested Citation

  • Chi-Hao Chen & Yun-Hsun Huang & Jung-Hua Wu & Hwa Lin, 2023. "Assessing the Cross-Sectoral Economic–Energy–Environmental Impacts of Electric-Vehicle Promotion in Taiwan," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14135-:d:1246742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    2. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    3. Varela-Vázquez, Pedro & Sánchez-Carreira, María del Carmen, 2017. "Estimation of the potential effects of offshore wind on the Spanish economy," Renewable Energy, Elsevier, vol. 111(C), pages 815-824.
    4. Philip Ulrich & Ulrike Lehr, 2020. "Economic effects of an E-mobility scenario – input structure and energy consumption," Economic Systems Research, Taylor & Francis Journals, vol. 32(1), pages 84-97, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    2. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    3. Wang, Kunlun & Zheng, Leven J. & Lin, Boqiang, 2024. "Demand-side incentives, competition, and firms’ innovative activities: Evidence from automobile industry in China," Energy Economics, Elsevier, vol. 132(C).
    4. repec:grz:wpaper:2013-02 is not listed on IDEAS
    5. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    6. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    7. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    8. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    9. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    10. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    11. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    12. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    13. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    14. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    15. Wei, Max & Smith, Sarah Josephine & Sohn, Michael D., 2017. "Non-constant learning rates in retrospective experience curve analyses and their correlation to deployment programs," Energy Policy, Elsevier, vol. 107(C), pages 356-369.
    16. Lin, Boqiang & Tan, Ruipeng, 2017. "Estimation of the environmental values of electric vehicles in Chinese cities," Energy Policy, Elsevier, vol. 104(C), pages 221-229.
    17. d'Amore, Federico & Bezzo, Fabrizio, 2017. "Managing technology performance risk in the strategic design of biomass-based supply chains for energy in the transport sector," Energy, Elsevier, vol. 138(C), pages 563-574.
    18. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    19. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Dachen Sheng & Heather A. Montgomery, 2024. "Charting Pollution Effects on Tourism: A Regional Analysis," Sustainability, MDPI, vol. 16(15), pages 1-15, July.
    21. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14135-:d:1246742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.