IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13668-d1238822.html
   My bibliography  Save this article

Improved Deep Reinforcement Learning for Intelligent Traffic Signal Control Using ECA_LSTM Network

Author

Listed:
  • Wenjiao Zai

    (College of Engineering, Sichuan Normal University, Chengdu 610101, China
    These authors contributed equally to this work.)

  • Dan Yang

    (College of Engineering, Sichuan Normal University, Chengdu 610101, China
    These authors contributed equally to this work.)

Abstract

Reinforcement learning is one of the most widely used methods for traffic signal control, but the method experiences issues with state information explosion, inadequate adaptability to special scenarios, and low security. Therefore, this paper proposes a traffic signal control method based on the efficient channel attention mechanism (ECA-NET), long short-term memory (LSTM), and double Dueling deep Q-network (D3QN), which is EL_D3QN. Firstly, the ECA-NET and LSTM module are included in order to lessen the state space’s design complexity, improve the model’s robustness, and adapt to various emergent scenarios. As a result, the cumulative reward is improved by 27.9%, and the average queue length, average waiting time, and C O 2 emissions are decreased by 15.8%, 22.6%, and 4.1%, respectively. Next, the dynamic phase interval t g a p is employed to enable the model to handle more traffic conditions. Its cumulative reward is increased by 34.2%, and the average queue length, average waiting time, and C O 2 emissions are reduced by 19.8%, 30.1%, and 5.6%. Finally, experiments are carried out using various vehicle circumstances and unique scenarios. In a complex environment, EL_D3QN reduces the average queue length, average waiting time, and C O 2 emissions by at least 13.2%, 20.2%, and 3.2% compared to the four existing methods. EL_D3QN also exhibits good generalization and control performance when exposed to the traffic scenarios of unequal stability and equal stability. Furthermore, even when dealing with unique events like a traffic surge, EL_D3QN maintains significant robustness.

Suggested Citation

  • Wenjiao Zai & Dan Yang, 2023. "Improved Deep Reinforcement Learning for Intelligent Traffic Signal Control Using ECA_LSTM Network," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13668-:d:1238822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Máté Kolat & Bálint Kővári & Tamás Bécsi & Szilárd Aradi, 2023. "Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Górka & Andrzej Czerepicki & Tomasz Krukowicz, 2024. "The Impact of Priority in Coordinated Traffic Lights on Tram Energy Consumption," Energies, MDPI, vol. 17(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13668-:d:1238822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.