Response Prediction of Asphalt Pavement in Cold Region with Thermo-Hydro-Mechanical Coupling Simulation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tamanna Kabir & Susan Tighe, 2023. "Construction and Performance Evaluation of Polyurethane-Bound Porous Rubber Pavement (PRP) Trial Section in the Cold Climate," Sustainability, MDPI, vol. 15(3), pages 1-31, January.
- Audrius Vaitkus & Judita Gražulytė & Egidijus Skrodenis & Igoris Kravcovas, 2016. "Design of Frost Resistant Pavement Structure Based on Road Weather Stations (RWSs) Data," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hyun-Jun Choi & Sewon Kim & YoungSeok Kim & Jongmuk Won, 2022. "Predicting Frost Depth of Soils in South Korea Using Machine Learning Techniques," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
- Qinglin Li & Haibin Wei & Peilei Zhou & Yangpeng Zhang & Leilei Han & Shuanye Han, 2019. "Experimental and Numerical Research on Utilizing Modified Silty Clay and Extruded Polystyrene (XPS) Board as the Subgrade Thermal Insulation Layer in a Seasonally Frozen Region, Northeast China," Sustainability, MDPI, vol. 11(13), pages 1-15, June.
- Martin Decky & Katarina Hodasova & Zuzana Papanova & Eva Remisova, 2022. "Sustainable Adaptive Cycle Pavements Using Composite Foam Concrete at High Altitudes in Central Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
- José Ángel Aranda & María Moncho Santonja & MÁ Gil Saurí & Guillermo Peris-Fajarnés, 2021. "Minimizing Shadow Area in Mountain Roads for Improving the Sustainability of Infrastructures," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
- Qinglin Li & Haibin Wei & Leilei Han & Fuyu Wang & Yangpeng Zhang & Shuanye Han, 2019. "Feasibility of Using Modified Silty Clay and Extruded Polystyrene (XPS) Board as the Subgrade Thermal Insulation Layer in a Seasonally Frozen Region, Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
More about this item
Keywords
THM coupled model; resilient modulus; freeze–thaw; fatigue life prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13614-:d:1238065. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.