IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13356-d1234103.html
   My bibliography  Save this article

An Evaluation of the Cracking Resistance of Steel- and Glass-Fiber-Reinforced Asphalt Mixtures Produced at Different Temperatures

Author

Listed:
  • Ayhan Oner Yucel

    (Department of Civil Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Merkez Kampus, Aydin 09010, Turkey)

Abstract

This study focuses on the effects of the production temperatures, warm mix asphalt (WMA) additive, and fiber content on the cracking resistance of steel- and glass-fiber-reinforced asphalt mixtures. By using three different approaches, which included different mixing and compaction temperatures, along with the incorporation of a WMA additive, the samples were produced utilizing the Marshall mix design method. The low-temperature cracking resistance and bottom-up fatigue cracking resistance of the asphalt mixture samples were assessed through indirect tensile (IDT) tests performed at two different test temperatures: −10 °C and 20 °C, respectively. According to the fracture work density values, glass fibers significantly improve the low-temperature cracking performance of asphalt mixtures. Furthermore, it was found that the low-temperature cracking resistance of the hot mix asphalt (HMA) mixtures containing fibers was similar to that of the mixtures prepared using the WMA additive at 15 °C lower mixing and compaction temperatures than the HMA mixtures. To conclude, the WMA additive improved the compactability of the steel- and glass-fiber-reinforced asphalt mixtures without compromising the low temperature cracking performance, despite the low mixing and compaction temperatures.

Suggested Citation

  • Ayhan Oner Yucel, 2023. "An Evaluation of the Cracking Resistance of Steel- and Glass-Fiber-Reinforced Asphalt Mixtures Produced at Different Temperatures," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13356-:d:1234103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Llopis-Castelló & Tatiana García-Segura & Laura Montalbán-Domingo & Amalia Sanz-Benlloch & Eugenio Pellicer, 2020. "Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    2. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13356-:d:1234103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.