IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13283-d1232945.html
   My bibliography  Save this article

Giant Trevally Optimization Approach for Probabilistic Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty

Author

Listed:
  • Mohamed S. Hashish

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Hany M. Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
    Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Zia Ullah

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Abdulaziz Alkuhayli

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Ahmed O. Badr

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

In this study, the Giant Trevally Optimizer (GTO) is employed to solve the probabilistic optimum power flow (P-OPF) issue, considering Renewable Energy Source (RES) uncertainties, achieving notable cost reduction. The objective function is established to minimize the overall generation cost, including the RES cost, which significantly surpassing existing solutions. The uncertain nature of the RES is represented through the employment of a Monte Carlo Simulation (MCS), strengthened by the K-means Clustering approach and the Elbow technique. Various cases are investigated, including various combinations of PV systems, WE systems, and both fixed and fluctuating loads. The study demonstrates that while considering the costs of solar, wind, or both might slightly increase the total generation cost, the cumulative generation cost remains significantly less than the scenario that does not consider the cost of RESs. The superior outcomes presented in this research underline the importance of considering RES costs, providing a more accurate representation of real-world system dynamics and enabling more effective decision making.

Suggested Citation

  • Mohamed S. Hashish & Hany M. Hasanien & Zia Ullah & Abdulaziz Alkuhayli & Ahmed O. Badr, 2023. "Giant Trevally Optimization Approach for Probabilistic Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13283-:d:1232945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
    2. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    3. Mohamed A. M. Shaheen & Zia Ullah & Mohammed H. Qais & Hany M. Hasanien & Kian J. Chua & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, November.
    4. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    5. Jayshree Pande & Paresh Nasikkar, 2023. "A Maximum Power Point Tracking Technique for a Wind Power System Based on the Trapezoidal Rule," Energies, MDPI, vol. 16(6), pages 1-18, March.
    6. Georgios Papazoglou & Pandelis Biskas, 2023. "Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem," Energies, MDPI, vol. 16(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Othman A. M. Omar & Ahmed O. Badr & Ibrahim Mohamed Diaaeldin, 2023. "Novel Fractional Order and Stochastic Formulations for the Precise Prediction of Commercial Photovoltaic Curves," Mathematics, MDPI, vol. 11(21), pages 1-19, October.
    2. Bozhen Jiang & Qin Wang & Shengyu Wu & Yidi Wang & Gang Lu, 2024. "Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    3. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    4. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    5. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    6. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    7. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    8. Juan Carlos Lozano Medina & Sebastian Perez-Baez & Federico Leon-Zerpa & Carlos A. Mendieta-Pino, 2024. "Alternatives for the Optimization and Reduction in the Carbon Footprint in Island Electricity Systems (IESs)," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    9. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    10. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Insights from a Comprehensive Capacity Expansion Planning Modeling on the Operation and Value of Hydropower Plants under High Renewable Penetrations," Energies, MDPI, vol. 17(7), pages 1-29, April.
    11. Rafael B. S. Veras & Clóvis B. M. Oliveira & Shigeaki L. de Lima & Osvaldo R. Saavedra & Denisson Q. Oliveira & Felipe M. Pimenta & Denivaldo C. P. Lopes & Audálio R. Torres Junior & Francisco L. A. N, 2023. "Assessing Economic Complementarity in Wind–Solar Hybrid Power Plants Connected to the Brazilian Grid," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    12. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    13. Haltor Mataifa & Senthil Krishnamurthy & Carl Kriger, 2023. "Comparative Analysis of the Particle Swarm Optimization and Primal-Dual Interior-Point Algorithms for Transmission System Volt/VAR Optimization in Rectangular Voltage Coordinates," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    14. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    15. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    16. Stefano Rinaldi & Marco Pasetti & Emiliano Sisinni & Federico Bonafini & Paolo Ferrari & Mattia Rizzi & Alessandra Flammini, 2018. "On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles," Energies, MDPI, vol. 11(5), pages 1-27, May.
    17. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    18. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    19. Paladin, Andrea & Das, Ridoy & Wang, Yue & Ali, Zunaib & Kotter, Richard & Putrus, Ghanim & Turri, Roberto, 2021. "Micro market based optimisation framework for decentralised management of distributed flexibility assets," Renewable Energy, Elsevier, vol. 163(C), pages 1595-1611.
    20. Liu, Shuo & Yang, Zhifang & Xia, Qing & Lin, Wei & Shi, Lianjun & Zeng, Dan, 2020. "Power trading region considering long-term contract for interconnected power networks," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13283-:d:1232945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.