IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12974-d1227239.html
   My bibliography  Save this article

In-Depth Lifecycle Assessment of Ballasted Railway Track and Slab Track Considering Varying Subsoil Conditions

Author

Listed:
  • Dieter Knabl

    (Institute of Railway Engineering and Transport Economy, Graz University of Technology, 8010 Graz, Austria)

  • Matthias Landgraf

    (Evias Rail Consulting, 8047 Graz, Austria)

Abstract

This study assesses and compares lifecycle (LC) greenhouse gas (GHG) emissions from the two main railway track construction types: ballasted track and slab track. In this study, preexisting soil conditions are considered, as they significantly influence necessary measures during the construction phase for each type. This study is executed for Austrian boundary conditions with speeds up to 250 km/h. The results show that ballasted track is associated with 11–20% lower LC GHG emissions, whereby the variation in relative emission reduction is associated with additional soil reinforcement treatments due to varying preexisting soil conditions. Poor preexisting soil conditions increase LC GHG emissions by 26%, underlying the necessity to integrate this parameter into the lifecycle assessment of railway track. In contrast to the higher service life of slab track construction, this type amounts to higher masses of concrete and demands more extensive measures for soil enhancement due to the higher stiffness of the track panel. Only in tunnel areas does slab track cause lower GHG emissions since soil reinforcements are not necessary due to an existing concrete base layer after tunnel construction. For both construction types, over 80% of the GHG emissions stem from material production. Hence, circular economy as well as innovations within steel and concrete production processes hold significant potential for reducing GHG emissions.

Suggested Citation

  • Dieter Knabl & Matthias Landgraf, 2023. "In-Depth Lifecycle Assessment of Ballasted Railway Track and Slab Track Considering Varying Subsoil Conditions," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12974-:d:1227239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martina Zeiner & Matthias Landgraf & Dieter Knabl & Bernhard Antony & Víctor Barrena Cárdenas & Christian Koczwara, 2021. "Assessment and Recommendations for a Fossil Free Future for Track Work Machinery," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    2. Lukas Hausberger & Tobias Cordes & Florian Gschösser, 2023. "Life Cycle Assessment of High-Performance Railway Infrastructure, Analysis of Superstructures in Tunnels and on Open Tracks," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    2. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2022. "Problems and Directions in Creating a National Non-Road Mobile Machinery Emission Inventory: A Critical Review," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    3. Šimun Lončarević & Petar Ilinčić & Zoran Lulić & Darko Kozarac, 2022. "Developing a Spatial Emission Inventory of Agricultural Machinery in Croatia by Using Large-Scale Survey Data," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    4. Piotr Nowotarski & Marcin Gajzler, 2024. "Improving Procedures for Maintaining Existing Railway Station Infrastructure in Poland as an Element of the Sustainable European Ecological Transformation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12974-:d:1227239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.