IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12874-d1225244.html
   My bibliography  Save this article

Digital Mapping of Soil pH Based on Machine Learning Combined with Feature Selection Methods in East China

Author

Listed:
  • Zhi-Dong Zhao

    (School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
    Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-Induced Disasters of Anhui Higher Education Institutes, Anhui Provincial Department of Education, Huainan 232001, China
    Coal Industry Engineering Research Center of Collaborative Monitoring of Mining Area’s Environment and Disasters, Huainan 232001, China)

  • Ming-Song Zhao

    (School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
    Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-Induced Disasters of Anhui Higher Education Institutes, Anhui Provincial Department of Education, Huainan 232001, China
    Coal Industry Engineering Research Center of Collaborative Monitoring of Mining Area’s Environment and Disasters, Huainan 232001, China)

  • Hong-Liang Lu

    (School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China)

  • Shi-Hang Wang

    (School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
    Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-Induced Disasters of Anhui Higher Education Institutes, Anhui Provincial Department of Education, Huainan 232001, China
    Coal Industry Engineering Research Center of Collaborative Monitoring of Mining Area’s Environment and Disasters, Huainan 232001, China)

  • Yuan-Yuan Lu

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic China, Nanjing 210042, China
    Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Environment Protection, Nanjing 210042, China)

Abstract

This study aimed to evaluate and compare the performances of the random forest (RF) and support vector regression (SVR) models combined with different feature selection methods, including recursive feature elimination (RFE), simulated annealing feature selection (SAFS), and selection by filtering (SBF) in predicting soil pH in Anhui Province, East China. We also used the ALL original features to build the RF and SVR models as a comparison. A total of 140 samples were selected, following the principles of randomness, uniformity, and representativeness, to consider the combination of landscape elements, such as topography, parent material, and land use. Auxiliary data, including climatic, topographic, and vegetation indexes, were used for predicting soil pH. The results showed that compared with the use the ALL original modeling features (ALL-RF, ALL-SVR), the combination of the three feature selection algorithms with RF and SVR can eliminate some redundant features and effectively improve the prediction accuracy of the soil pH model. For the RF model, the RMSE and the MAE of the calibration of the RFE-RF model were 0.73 and 0.57 and had the highest R 2 in four different RF models. The testing set of the RFE-RF model had an R 2 of 0.61, which was better than that of the ALL-RF (R 2 = 0.45) model and lower than those of the SAFS-RF (R 2 = 0.71) and SBF-RF (R 2 = 0.69) models. For the SVR model, the RFE-RF model was more robust and had better generalization ability. The accuracy of digital soil mapping can be improved through feature selection.

Suggested Citation

  • Zhi-Dong Zhao & Ming-Song Zhao & Hong-Liang Lu & Shi-Hang Wang & Yuan-Yuan Lu, 2023. "Digital Mapping of Soil pH Based on Machine Learning Combined with Feature Selection Methods in East China," Sustainability, MDPI, vol. 15(17), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12874-:d:1225244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12874/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Mei & Tong Tong & Shoufu Zhang & Chunyang Ying & Mengmeng Tang & Mei Zhang & Tianpei Cai & Youhua Ma & Qiang Wang, 2024. "Optimization Study of Soil Organic Matter Mapping Model in Complex Terrain Areas: A Case Study of Mingguang City, China," Sustainability, MDPI, vol. 16(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12874-:d:1225244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.