IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12185-d1213713.html
   My bibliography  Save this article

Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels

Author

Listed:
  • Benjamin Tawiah

    (Department of Industrial Art (Textiles), Kwame Nkrumah University of Science and Technology, PMB, Kumasi AK-417-4732, Ghana
    School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China)

  • Emmanuel A. Ofori

    (Department of Industrial Art (Textiles), Kwame Nkrumah University of Science and Technology, PMB, Kumasi AK-417-4732, Ghana)

  • Fei Bin

    (School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Fire safety is a critical concern in various industries necessitating the development of sustainable and effective fire-resistant materials. Sustainable fire-resistant polysaccharide-based composite aerogels are regarded as an innovative solution in fire safety applications, and as such, research in this field has increased consistently over the past few years. Despite the plethora of literature on this important subject, only a few studies have attempted to map the global research of sustainable fire-resistant polysaccharide-based composite aerogels to identify the geospatial collaborative network and trend of research. This study utilizes a scientometric review of global trends in sustainable fire-resistant polysaccharide-based composite aerogels research between 2003 and 2023 using VOSviewer and biblioshiny to analyze co-author, co-word, co-citation, clusters, and geospatial maps. A total of 234 bibliographic records from the Scopus database were analyzed to generate the study’s research power networks and geospatial map. The most significant contributions in sustainable fire-resistant polysaccharide-based composite aerogels come from China, the United States, Australia, Canada, and India with records of 194, 20, 11, 9, and 8, respectively. The top five sources for articles in this area of research include ACS Applied Materials and Interfaces, Chemical Engineering Journal, Composite Engineering, ACS Sustainable Chemistry and Engineering, and Carbohydrate Polymers. The application of sustainable fire-resistant polysaccharide-based composite aerogels spans the engineering and construction fields. The versatility in the fabrication and customization allows for seamless integration into diverse applications. The article concludes by emphasizing the significance of sustainable fire-resistant polysaccharide-based composite aerogels as a promising advancement in fire safety technology, combining sustainability, fire resistance, versatility, and mechanical strength to address critical challenges in the field. This review provides important insight into the research challenges, trends, and patterns of sustainable fire-resistant polysaccharide-based composite aerogel research worldwide.

Suggested Citation

  • Benjamin Tawiah & Emmanuel A. Ofori & Fei Bin, 2023. "Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels," Sustainability, MDPI, vol. 15(16), pages 1-34, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12185-:d:1213713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    2. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    3. Jingran Guo & Shubin Fu & Yuanpeng Deng & Xiang Xu & Shujin Laima & Dizhou Liu & Pengyu Zhang & Jian Zhou & Han Zhao & Hongxuan Yu & Shixuan Dang & Jianing Zhang & Yingde Zhao & Hui Li & Xiangfeng Dua, 2022. "Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions," Nature, Nature, vol. 606(7916), pages 909-916, June.
    4. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    5. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    6. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    7. Andrea Caputo & Mariya Kargina, 2022. "A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(1), pages 82-88, March.
    8. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dušan Nikolić & Dragan Ivanović & Lidija Ivanović, 2024. "An open-source tool for merging data from multiple citation databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4573-4595, July.
    2. Qian Wang & Shixian Luo & Jiao Zhang & Katsunori Furuya, 2022. "Increased Attention to Smart Development in Rural Areas: A Scientometric Analysis of Smart Village Research," Land, MDPI, vol. 11(8), pages 1-28, August.
    3. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    4. Kristina Galjanić & Ivan Marović & Nikša Jajac, 2022. "Decision Support Systems for Managing Construction Projects: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    5. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    6. Jin Su & Mo Wang & Mohd Adib Mohammad Razi & Norlida Mohd Dom & Noralfishah Sulaiman & Lai-Wai Tan, 2023. "A Bibliometric Review of Nature-Based Solutions on Urban Stormwater Management," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    7. Hull, Simon Antony, 2024. "All for one and one for all? Exploring the nexus of land administration, land management and land governance," Land Use Policy, Elsevier, vol. 144(C).
    8. Bhavna Thawani & Tushar Panigrahi & Meena Bhatia, 2024. "Eleven years of integrated reporting: a bibliometric analysis," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 21(4), pages 666-684, December.
    9. P. K. Priyan & Wakara Ibrahimu Nyabakora & Geofrey Rwezimula, 2023. "A bibliometric review of the knowledge base on financial inclusion," SN Business & Economics, Springer, vol. 3(2), pages 1-21, February.
    10. Md. Nazmus Sakib & Shah Ridwan Chowdhury & Mohammad Younus & Nehad Laila Sanju & Farhana Foysal Satata & Mahafuza Islam, 2024. "How HR analytics evolved over time: a bibliometric analysis on Scopus database," Future Business Journal, Springer, vol. 10(1), pages 1-22, December.
    11. Caputo, Andrea & Pizzi, Simone & Pellegrini, Massimiliano M. & Dabić, Marina, 2021. "Digitalization and business models: Where are we going? A science map of the field," Journal of Business Research, Elsevier, vol. 123(C), pages 489-501.
    12. Jie Xue & Genserik Reniers & Jie Li & Ming Yang & Chaozhong Wu & P.H.A.J.M. van Gelder, 2021. "A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection," IJERPH, MDPI, vol. 18(11), pages 1-29, June.
    13. Batista-Canino, Rosa M. & Santana-Hernández, Lidia & Medina-Brito, Pino, 2024. "A holistic literature review on entrepreneurial Intention: A scientometric approach," Journal of Business Research, Elsevier, vol. 174(C).
    14. Huixin Wang & Jing Xie & Shixian Luo & Duy Thong Ta & Qian Wang & Jiao Zhang & Daer Su & Katsunori Furuya, 2023. "Exploring the Interplay between Landscape Planning and Human Well-Being: A Scientometric Review," Land, MDPI, vol. 12(7), pages 1-24, June.
    15. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    16. P. K. Priyan & Wakara Ibrahimu Nyabakora & Geofrey Rwezimula, 2023. "A Bibliometric Review of the Knowledge Base on Capital Structure Decisions," Vision, , vol. 27(2), pages 155-166, April.
    17. Laengle, Sigifredo & Merigó, José M. & Miranda, Jaime & Słowiński, Roman & Bomze, Immanuel & Borgonovo, Emanuele & Dyson, Robert G. & Oliveira, José Fernando & Teunter, Ruud, 2017. "Forty years of the European Journal of Operational Research: A bibliometric overview," European Journal of Operational Research, Elsevier, vol. 262(3), pages 803-816.
    18. U Ubaidillah & Bhre Wangsa Lenggana & Seung-Bok Choi, 2022. "Bibliometric Review of Magnetorheological Materials," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    19. Saurav Chandra Talukder & Zoltán Lakner, 2023. "Exploring the Landscape of Social Entrepreneurship and Crowdfunding: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    20. Andrea Caputo & Mariya Kargina, 2022. "A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(1), pages 82-88, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12185-:d:1213713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.