IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11300-d1198423.html
   My bibliography  Save this article

Experimental and Mechanism Study of Aerodynamic Noise Emission Characteristics from a Turbocharger Compressor of Heavy-Duty Diesel Engine Based on Full Operating Range

Author

Listed:
  • Rong Huang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Jimin Ni

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Qiwei Wang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Xiuyong Shi

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Qi Yin

    (SAIC Motor, General Institute of Innovation Research and Development, Shanghai 201804, China)

Abstract

Heavy-duty diesel engines equipped with turbochargers is an effective way to alleviate energy shortage and reduce gas emissions, but their compressor aerodynamic noise emissions have become an important issue that needs to be addressed urgently. Therefore, to study the aerodynamic noise emission characteristics of a compressor during the full operating range, experimental and numerical simulation methods were used to analyze the aerodynamic noise emissions. The results showed that aerodynamic noise’s total sound pressure level (SPL) increased with increased speed under the test conditions. At low speeds, the total SPL of aerodynamic noise was affected by the mass flow of the compressor more obviously. The maximum difference of aerodynamic noise total SPL was 1.55 dB at 60,000 r/min under different mass flows. At the same speed, the compressor could achieve lower aerodynamic noise emissions by operating in the high-efficiency region (middle mass flows). In the compressor aerodynamic noises, the blade passing frequency (BPF) noise played a dominant role. The transient acoustic-vibration spectral characteristics and fluctuation pressure analysis indicated that BPF and its harmonic frequency noises were mainly caused by the unsteady fluctuation pressure. As the speed increased, the BPF noise contributed more to the total SPL of the aerodynamic noise, and its percentage was up to 75.35%. The novelty of this study was the analysis of the relationship between compressor aerodynamic noise and internal flow characteristics at full operating conditions. It provided a theoretical basis for reducing the heavy-duty diesel engine turbocharger compressor aerodynamic noise emissions.

Suggested Citation

  • Rong Huang & Jimin Ni & Qiwei Wang & Xiuyong Shi & Qi Yin, 2023. "Experimental and Mechanism Study of Aerodynamic Noise Emission Characteristics from a Turbocharger Compressor of Heavy-Duty Diesel Engine Based on Full Operating Range," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11300-:d:1198423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11300/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingtian Yao & Yunxiao Dong & Xiang Li & Peiyong Ni & Xuewen Zhang & Yuhang Fan, 2024. "Exploring the Combustion Performance of a Non-Road Air-Cooled Two-Cylinder Turbocharged Diesel Engine," Sustainability, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11300-:d:1198423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.