IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11199-d1196696.html
   My bibliography  Save this article

Demand Priority of Green Space from the Perspective of Carbon Emissions and Storage

Author

Listed:
  • Lige Xu

    (Guangzhou Urban Planning and Design Co., Ltd., Guangzhou 510030, China)

  • Kailun Fang

    (Guangzhou Urban Planning and Design Co., Ltd., Guangzhou 510030, China)

  • Yu Huang

    (School of Civil Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China)

  • Shuangyu Xu

    (Guangzhou Urban Planning and Design Co., Ltd., Guangzhou 510030, China)

Abstract

During the process of rapid urban expansion, there has been a growing interest in understanding the spatial requirements of green spaces. However, limited research has evaluated green space demand specifically in terms of carbon storage and carbon emissions. This study introduces a novel methodological framework that aligns ecosystem service functions with both supply and demand, considering carbon storage and carbon emissions as crucial perspectives. The goal was to develop a comprehensive approach to assess the matching between the supply and demand of green spaces based on their carbon-related ecosystem services. The following research questions were developed to guide this study: (1) What are the spatial and temporal characteristics of carbon storage? (2) What are the spatiotemporal variations in carbon emissions on a city scale? (3) How does a city obtain the demand priority evaluation of green spaces in terms of carbon neutrality? Using Guangzhou as a case study, we employed the integrated valuation of ecosystem services and tradeoffs (InVEST) model to measure the spatial and temporal patterns of carbon storage. Remote sensing data were utilized, along with emission factors, to analyze the spatial and temporal characteristics of carbon emissions. The line of best fit method was employed to predict future carbon storage and carbon emissions, as well as population density and average land GDP. Based on these predictions, we prioritized the demand for green spaces. The results indicate the future demand priority order for green spaces in different districts. We suggest that this green space demand evaluation model can serve as a reference for future policy making and be applied to other cities worldwide.

Suggested Citation

  • Lige Xu & Kailun Fang & Yu Huang & Shuangyu Xu, 2023. "Demand Priority of Green Space from the Perspective of Carbon Emissions and Storage," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11199-:d:1196696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wangbao Liu, 2022. "Tenure-Based Housing Spatial Patterns and Residential Segregation in Guangzhou under the Background of Housing Market Reform," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    2. Maria Ignatieva & Dagmar Haase & Diana Dushkova & Annegret Haase, 2020. "Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions," Land, MDPI, vol. 9(3), pages 1-27, March.
    3. Chang Luo & Xiangyi Li, 2021. "Assessment of Ecosystem Service Supply, Demand, and Balance of Urban Green Spaces in a Typical Mountainous City: A Case Study on Chongqing, China," IJERPH, MDPI, vol. 18(20), pages 1-17, October.
    4. Shruti Lahoti & Ashish Lahoti & Rajendra Kumar Joshi & Osamu Saito, 2020. "Vegetation Structure, Species Composition, and Carbon Sink Potential of Urban Green Spaces in Nagpur City, India," Land, MDPI, vol. 9(4), pages 1-20, April.
    5. Hao Wu & Lingbo Liu & Yang Yu & Zhenghong Peng, 2018. "Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    6. Zheng, Heyun & Ge, Liming, 2022. "Carbon emissions reduction effects of sustainable development policy in resource-based cities from the perspective of resource dependence: Theory and Chinese experience," Resources Policy, Elsevier, vol. 78(C).
    7. Dongyang Xiao & Haipeng Niu & Jin Guo & Suxia Zhao & Liangxin Fan, 2021. "Carbon Storage Change Analysis and Emission Reduction Suggestions under Land Use Transition: A Case Study of Henan Province, China," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    8. Martina Artmann & Olaf Bastian & Karsten Grunewald, 2017. "Using the Concepts of Green Infrastructure and Ecosystem Services to Specify Leitbilder for Compact and Green Cities—The Example of the Landscape Plan of Dresden (Germany)," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    9. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    10. Yijun Zhang & Suzanne Mavoa & Jinfeng Zhao & Deborah Raphael & Melody Smith, 2020. "The Association between Green Space and Adolescents’ Mental Well-Being: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shurui Gao & Peiyuan Tao & Zhiming Zhao & Xinyue Dong & Jiayan Li & Peng Yao, 2024. "Estimation and Differential Analysis of the Carbon Sink Service Radius of Urban Green Spaces in the Beijing Plain Area," Sustainability, MDPI, vol. 16(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Liu & Xiaoma Li & Ding Song & Hui Zhai, 2021. "Evaluation and Monitoring of Urban Public Greenspace Planning Using Landscape Metrics in Kunming," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    2. Diana Dushkova & Annegret Haase & Manuel Wolff & Dagmar Haase, 2021. "Editorial for Special Issue “Nature-Based Solutions (NBS) in Cities and Their Interactions with Urban Land, Ecosystems, Built Environments and People: Debating Societal Implications”," Land, MDPI, vol. 10(9), pages 1-7, September.
    3. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    4. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    5. Mounir Dahmani & Mohamed Mabrouki & Ludovic Ragni, 2021. "Decoupling Analysis of Greenhouse Gas Emissions from Economic Growth: A Case Study of Tunisia," Energies, MDPI, vol. 14(22), pages 1-15, November.
    6. Aurélie Mercier & Stéphanie Souche‐Le Corvec & Nicolas Ovtracht, 2021. "Measure of accessibility to postal services in France: A potential spatial accessibility approach applied in an urban region," Papers in Regional Science, Wiley Blackwell, vol. 100(1), pages 227-249, February.
    7. Ivanize Silva & Rafael Santos & António Lopes & Virgínia Araújo, 2018. "Morphological Indices as Urban Planning Tools in Northeastern Brazil," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    8. Martí, Pablo & García-Mayor, Clara & Nolasco-Cirugeda, Almudena & Serrano-Estrada, Leticia, 2020. "Green infrastructure planning: Unveiling meaningful spaces through Foursquare users’ preferences," Land Use Policy, Elsevier, vol. 97(C).
    9. Maram Tawil & Yasemin Utku & Kawthar Alrayyan & Christa Reicher, 2019. "Revierparks as an integrated green network in Germany: An option for Amman?," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-24, December.
    10. Megan Rowley & Raluca Topciu & Matthew Owens, 2022. "A Systematic Review of Mechanisms Underpinning Psychological Change Following Nature Exposure in an Adolescent Population," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    11. Xuancheng Zhao & Fengshi Li & Yongzhi Yan & Qing Zhang, 2022. "Biodiversity in Urban Green Space: A Bibliometric Review on the Current Research Field and Its Prospects," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    12. Meihan Jin & Lu Liu & De Tong & Yongxi Gong & Yu Liu, 2019. "Evaluating the Spatial Accessibility and Distribution Balance of Multi-Level Medical Service Facilities," IJERPH, MDPI, vol. 16(7), pages 1-19, March.
    13. Brzoska, P. & Grunewald, K. & Bastian, O., 2021. "A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts," Ecosystem Services, Elsevier, vol. 49(C).
    14. Clara García-Mayor & Pablo Martí & Manuel Castaño & Álvaro Bernabeu-Bautista, 2020. "The Unexploited Potential of Converting Rail Tracks to Greenways: The Spanish Vías Verdes," Sustainability, MDPI, vol. 12(3), pages 1-25, January.
    15. Amber L. Pearson & Catherine D. Brown & Aaron Reuben & Natalie Nicholls & Karin A. Pfeiffer & Kimberly A. Clevenger, 2023. "Elementary Classroom Views of Nature Are Associated with Lower Child Externalizing Behavior Problems," IJERPH, MDPI, vol. 20(9), pages 1-14, April.
    16. Miloslava Plachkinova & Au Vo & Brian Hilton & Rahul Bhaskar, 2018. "Response to Delamater’s Comment on “A Conceptual Framework for Quality Healthcare Accessibility: A Scalable Approach for Big Data Technologies”," Information Systems Frontiers, Springer, vol. 20(2), pages 311-314, April.
    17. Na’Taki Osborne Jelks & Viniece Jennings & Alessandro Rigolon, 2021. "Green Gentrification and Health: A Scoping Review," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    18. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    19. Muhammad Imran & Azlan Zahid & Salma Mouneer & Orhan Özçatalbaş & Shamsheer Ul Haq & Pomi Shahbaz & Muhammad Muzammil & Muhammad Ramiz Murtaza, 2022. "Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    20. Mário Santos & Helena Moreira & João Alexandre Cabral & Ronaldo Gabriel & Andreia Teixeira & Rita Bastos & Alfredo Aires, 2022. "Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay," IJERPH, MDPI, vol. 19(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11199-:d:1196696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.