IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10884-d1191719.html
   My bibliography  Save this article

New Hybrid MPPT Technique Including Artificial Intelligence and Traditional Techniques for Extracting the Global Maximum Power from Partially Shaded PV Systems

Author

Listed:
  • Mohamed Zaghloul-El Masry

    (Department of Electronics and Communication Engineering, Faculty of Engineering at Helwan, Helwan University, Cairo 11722, Egypt)

  • Abdallah Mohammed

    (Department of Electrical Engineering, Faculty of Engineering at Helwan, Helwan University, Cairo 11722, Egypt)

  • Fathy Amer

    (Department of Electronics and Communication Engineering, Faculty of Engineering at Helwan, Helwan University, Cairo 11722, Egypt)

  • Roaa Mubarak

    (Department of Electronics and Communication Engineering, Faculty of Engineering at Helwan, Helwan University, Cairo 11722, Egypt)

Abstract

This research aimed to increase the power captured from photovoltaic (PV) systems by continuously adjusting the PV systems to work at the maximum power point under climate changes such as solar irradiance change and temperature change and by tracking the global maximum power under partial shading conditions (PSCs). Under the effect of partial shading (PS), the PV curve has many local maximum peaks (LMPs) and one global maximum peak (GMP) which is dynamic because it changes with time when the shading pattern (SP) changes. The traditional maximum power point tracking (MPPT) methods are unable to track the Dynamic GMP and may fall into one of the LMPs. Many modern MPPT methods have been introduced that can track the Dynamic GMP, but their effectiveness can be improved. In this respect, this work introduces a new optimal MPPT technique to enhance the performance of the maximum power point tracking of solar cells under environmental changes and partial shading conditions. The proposed technique combines three well-known and important MPPT techniques, which are the Artificial Neural Network (ANN), Variable Step Perturb and Observe (VSP&O), and Fuzzy Logic Controller (FLC). Artificial Neural Network gives a voltage near the optimum voltage, Variable Step Perturb and Observe updates the voltage to get close to the optimum voltage, and Fuzzy Logic Controller updates the step size of the (P&O) technique. The proposed hybrid ANN-VSP&O-FLC technique showed its ability to track the Dynamic GMP accurately and quickly under the variation in the shading patterns with time and its ability to follow maximum power efficiently and quickly under climate changes. The proposed hybrid ANN-VSP&O-FLC technique also showed very low distortions in waveforms and very low oscillations around the steady state. The proposed hybrid ANN-VSP&O-FLC technique was compared to the most recent and effective MPPT techniques in terms of steady-state behavior, tracking speed, tracking efficiency, and distortions in waveforms, and the comparison showed that it is superior to them, with lower distortions in waveforms, a faster tracking speed (less than 0.1 s), higher tracking efficiency (greater than 99.65%), and lower oscillations around the steady state (less than 2 Watts).

Suggested Citation

  • Mohamed Zaghloul-El Masry & Abdallah Mohammed & Fathy Amer & Roaa Mubarak, 2023. "New Hybrid MPPT Technique Including Artificial Intelligence and Traditional Techniques for Extracting the Global Maximum Power from Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10884-:d:1191719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    2. Sundareswaran, K. & Vignesh kumar, V. & Palani, S., 2015. "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, Elsevier, vol. 75(C), pages 308-317.
    3. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    4. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    5. Prasanth Ram, J. & Rajasekar, N., 2017. "A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions," Applied Energy, Elsevier, vol. 201(C), pages 45-59.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Eltamaly, Ali M. & Al-Saud, M.S. & Abokhalil, Ahmed G. & Farh, Hassan M.H., 2020. "Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Tamir Shaqarin, 2023. "Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    2. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    3. Eltamaly, Ali M. & Al-Saud, M.S. & Abokhalil, Ahmed G. & Farh, Hassan M.H., 2020. "Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    5. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    6. Novie Ayub Windarko & Muhammad Nizar Habibi & Bambang Sumantri & Eka Prasetyono & Moh. Zaenal Efendi & Taufik, 2021. "A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    8. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    9. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    10. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    11. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    12. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    13. Tamir Shaqarin, 2023. "Particle Swarm Optimization with Targeted Position-Mutated Elitism (PSO-TPME) for Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    14. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    15. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    17. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    18. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    20. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10884-:d:1191719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.