IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9851-d1175670.html
   My bibliography  Save this article

Evaluation of Pedestrian Comfort for a Footbridge with Hinged Piers

Author

Listed:
  • Shuo Yang

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

  • Jianrong Yang

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

  • Rui Li

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

Abstract

To study the standardized evaluation method of vibration comfort of pedestrian bridges, the effect of the transient response term is ignored based on the generalized single degree of freedom (SDOF) method with reference to the American Institution of Steel Construction inc (AISC 11) specification. The resonance conditions between the crowd and the bridge structure are also considered, and the pedestrian bridge structure is simplified to an SDOF system. Then, the peak acceleration of the structure under crowd excitation is directly calculated using the generalized crowd load, and the comfort evaluation is carried out according to the German EN03 code and the Chinese code. For a new pedestrian bridge with hinged piers, human-induced vibration tests were carried out to obtain the structural acceleration time response data under various crowd load excitation conditions, and the acceleration values calculated with the numerical simulation method, the frequency response function method, the generalized SDOF method, and the proposed method were compared with field measurements. The results show that for the normal excitation condition with a crowd density less than or equal to 0.2 person/m 2 , the acceleration maximum error for the proposed method is between 4.22% and 13.28%. The error is only 6.35% compared with the finite element simulation results. The method can derive peak acceleration by performing only modal tests, eliminating errors caused by different testers and errors due to deflection measurements. It saves considerable time cost and economic cost, and improves the speed of pedestrian bridge comfort evaluation. Therefore, the method proposed for the first time in this study can accurately assess the human-caused vibration comfort of pedestrian bridges with articulated piers. Although the hinged-pier and column steel pedestrian bridge meets the code requirement of a vertical first-order frequency greater than 3 Hz, it is recommended to add TMD vibration damping measures to the bridge in order to improve pedestrian comfort.

Suggested Citation

  • Shuo Yang & Jianrong Yang & Rui Li, 2023. "Evaluation of Pedestrian Comfort for a Footbridge with Hinged Piers," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9851-:d:1175670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuanjie Cui & Rujin Ma & Xiaohong Hu & Wuchao He, 2019. "Vibration Analysis for Pendent Pedestrian Path of a Long-Span Extradosed Bridge," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoming Lei & Limin Sun & Ye Xia & Tiantao He, 2020. "Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    2. Lianhuo Wu & Zelin Zhou & Jinxiang Zhang & Mingjin Zhang, 2023. "A Numerical Method for Conformal Mapping of Closed Box Girder Bridges and Its Application," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    3. Lianhuo Wu & Mingjin Zhang & Fanying Jiang & Zelin Zhou & Yongle Li, 2023. "An Analytical Solution for Unsteady Aerodynamic Forces on Streamlined Box Girders with Coupled Vibration," Sustainability, MDPI, vol. 15(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9851-:d:1175670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.