IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8878-d1160763.html
   My bibliography  Save this article

Has the Wind Power Price Policy Promoted the High-Quality Development of China’s Wind Power Industry?—Analysis Based on Total Factor Productivity

Author

Listed:
  • Jingxiao Chen

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Lei Zhang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Gaodan Deng

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The wind power price policy has promoted the rapid development of the wind power industry in China. However, China’s wind power industry is facing high-quality development problems such as wind curtailment and blind investment. Exploring the relationship between the change in wind power price policy and China’s high-quality development of wind power is of great significance for the energy system to achieve carbon neutrality. This paper constructs an SBM-GML global covariance model, calculates the total factor productivity of wind power in 30 provinces in China from 2015 to 2019 and conducts index decomposition, and selects provincial panel data from 2015 to 2019 to empirically test the impact of the wind power price policy on the total factor productivity of wind power in China. The results show that the wind power price policy can significantly improve the total factor productivity of wind power, and the results of the endogenous test and robustness test show the effectiveness of the model. The wind power price policy is helpful to promote the technological progress of wind power, affect the reduction of the price difference between wind power benchmark price and coal power benchmark price, and then promote the improvement of wind power total factor productivity so as to meet the policy requirements of wind power full grid parity. In addition, the impact of wind power price policy on the total factor productivity of wind power has obvious regional heterogeneity. Future price policy formulation should clarify industry development expectations, consider regional differences, and establish a sound, market-oriented electricity pricing mechanism.

Suggested Citation

  • Jingxiao Chen & Lei Zhang & Gaodan Deng, 2023. "Has the Wind Power Price Policy Promoted the High-Quality Development of China’s Wind Power Industry?—Analysis Based on Total Factor Productivity," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8878-:d:1160763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    2. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    3. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    4. Fare, R. & Grosskopf, S. & Logan, J., 1985. "The relative performance of publicly-owned and privately-owned electric utilities," Journal of Public Economics, Elsevier, vol. 26(1), pages 89-106, February.
    5. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    6. Goto, Mika & Tsutsui, Miki, 1998. "Comparison of Productive and Cost Efficiencies Among Japanese and US Electric Utilities," Omega, Elsevier, vol. 26(2), pages 177-194, April.
    7. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    8. Ritzenhofen, Ingmar & Birge, John R. & Spinler, Stefan, 2016. "The structural impact of renewable portfolio standards and feed-in tariffs on electricity markets," European Journal of Operational Research, Elsevier, vol. 255(1), pages 224-242.
    9. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2017. "Has renewable energy induced competitive behavior in the Spanish electricity market?," Energy Policy, Elsevier, vol. 104(C), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heping Ding & Yuxia Guo & Xue Wu & Cui Wang & Yu Zhang & Hongjun Liu & Yujia Liu & Aiyong Lin & Fagang Hu, 2022. "Data-Driven Resource Efficiency Evaluation and Improvement of the Logistics Industry in 30 Chinese Provinces and Cities," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    2. Zhangsheng Liu & Xiaolu Zhang & Liuqingqing Yang & Yinjie Shen, 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    3. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    4. Zhou, Lin & Fan, Jianshuang & Hu, Mingzhi & Yu, Xiaofen, 2024. "Clean air policy and green total factor productivity: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 133(C).
    5. Sun, Yu & Yang, Feng & Wang, Dawei & Ang, Sheng, 2023. "Efficiency evaluation for higher education institutions in China considering unbalanced regional development: A meta-frontier Super-SBM model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    6. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    7. Mengchao Yao & Jinjun Duan & Qingsong Wang, 2022. "Spatial and Temporal Evolution Analysis of Industrial Green Technology Innovation Efficiency in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    8. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    9. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    10. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    11. Zhou, Dequn & Dong, Zhuojia & Sang, Xiuzhi & Wang, Qunwei & Yu, Xianyu, 2023. "Do feed-in tariff reduction and green certificate trading effectively promote regional sustainable development?," Energy, Elsevier, vol. 283(C).
    12. Li, Shuangmei & Zhu, Xuehong & Zhang, Tao, 2023. "Optimum combination of heterogeneous environmental policy instruments and market for green transformation: Empirical evidence from China's metal sector," Energy Economics, Elsevier, vol. 123(C).
    13. Siying Hu & Shangkun Lu & Huiqiu Zhou, 2023. "Public Investment, Environmental Regulation, and the Sustainable Development of Agriculture in China Based on the Decomposition of Green Total Factor Productivity," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    14. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    15. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    16. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    17. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    18. Shuai Wang & Cunyi Yang & Zhenghui Li, 2021. "Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency," Land, MDPI, vol. 10(10), pages 1-26, October.
    19. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    20. See, Kok Fong & Ma, Zhanxin, 2018. "Does non-revenue water affect Malaysia's water services industry productivity?," Utilities Policy, Elsevier, vol. 54(C), pages 125-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8878-:d:1160763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.