IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8764-d1158651.html
   My bibliography  Save this article

Experimental Study on Expansive Soil Improved by Lignin and Its Derivatives

Author

Listed:
  • Yi Cai

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

  • Mingxi Ou

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

Abstract

Expansive soil covers the vast area of Mengzi, Yunnan, China, and creates numerous hazards for construction projects. When treating expansive soil, a modifier is usually added to inhibit its expansion and increase its strength. Lignin and its derivatives can better meet the requirements of expansive soil treatment and have become the preferred choice to replace traditional inorganic modifiers. Lignin is a green and environmentally friendly physical improvement material. In this study, lignin was used to improve soil, alone and combined with its derivatives, and the physical and mechanical properties of the improved soil were studied. Combined with an unconfined compressive strength test, a low-stress direct shear test, and a scanning electron microscopy test, the mechanism of lignin and its derivatives for the improvement of expansive soil is discussed. When calcium lignosulfonate alone was added, the improved soil’s expansion rate decreased, the soil’s water-holding capacity decreased, and its strength increased. Furthermore, the inclusion of 3% calcium lignosulfonate was the best. When the expansive soil was improved with the optimal calcium lignosulfonate content (3% CL) and composite lignin fibers, the strength of the soil body was further improved, the toughness was enhanced, and it shows plastic swelling failure and good water stability. 3% calcium lignosulfonate and 1.5% lignin fiber was the best for composite improvement as; it offered the optimal degree of particle aggregation and the development of pores and cracks was better inhibited, even though the fiber distribution was messy. This study shows that lignin and its derivatives can be used instead of inorganic modifiers to treat expansive soils to reduce the number of inorganic modifiers, and provided a sustainable treatment plan for reducing industrial waste.

Suggested Citation

  • Yi Cai & Mingxi Ou, 2023. "Experimental Study on Expansive Soil Improved by Lignin and Its Derivatives," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8764-:d:1158651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Zhang & Panxuan Tang & Tian Lan & Zhaojing Liu & Shiguang Ling, 2022. "Resilient and Sustainability Analysis of Flexible Supporting Structure of Expansive Soil Slope," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelmaoula Mahamoud Tahir & Sedat Sert, 2023. "Effect of Olivine Additive on the Shear Resistance of Fine-Grained Soils: A Sustainable Approach for Risk Mitigation and Environmental Impact Reduction," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    2. Peng Luo & Min Ma, 2024. "Failure Mechanisms and Protection Measures for Expansive Soil Slopes: A Review," Sustainability, MDPI, vol. 16(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongmei Wang & Zhiqiang Lai & Lianjun Zhao & Kangwei Lai & Li Pan, 2022. "Mesoscopic Failure Behavior of Strip Footing on Geosynthetic-Reinforced Granular Soil Foundations Using PIV Technology," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    2. Danqing Song & Wanpeng Shi & Chengwen Wang & Lihu Dong & Xin He & Enge Wu & Jianjun Zhao & Runhu Lu, 2023. "Numerical Investigation of a Local Precise Reinforcement Method for Dynamic Stability of Rock Slope under Earthquakes Using Continuum–Discontinuum Element Method," Sustainability, MDPI, vol. 15(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8764-:d:1158651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.