IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8029-d1147233.html
   My bibliography  Save this article

Socio-Environmental Vulnerability to Drought Conditions and Land Degradation: An Assessment in Two Northeastern Brazilian River Basins

Author

Listed:
  • Rita Marcia da Silva Pinto Vieira

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Javier Tomasella

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Ana Paula Martins do Amaral Cunha

    (Centro Nacional de Monitoramento de Desastres Naturais, São José dos Campos 12247-016, SP, Brazil)

  • Alexandre Augusto Barbosa

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • João Pompeu

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Yara Ferreira

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Fabrícia Cristina Santos

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Lincoln Muniz Alves

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

  • Jean Ometto

    (Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, SP, Brazil)

Abstract

Over the past few decades, a significant amount of agricultural land has been lost due to soil degradation/desertification. In addition, the increasing frequency of extreme events, such as intense droughts and forest fires, has negatively impacted various ecosystem services. Two of the main Brazilian biomes—the Cerrado and the Caatinga—have been affected by increased rainfall variability, leading to desertification, increased fire frequency, and, consequently, rising concerns regarding the water and food security of the local population. In this study, we develop a methodology to assess these impacts using a Socio-Environmental Vulnerability Index (SEVI) that combines physical, environmental, and socio-economic indicators related to exposure, sensitivity, and adaptation, as well as including socio-environmental feedback. The developed SEVI is then applied to the São Francisco and Parnaíba river basins. The proposed index is based on the MEDALUS methodology and is adapted to include multiple biological, physical, and socio-economic indicators, allowing for the discrimination of areas characterized by different levels of vulnerability. We also analyze the effectiveness of governmental policies, such as the creation of conservation areas and the rural registration of properties, in reducing vulnerability. The SEVI analysis highlights that adaptive capacity is the main constraint for reducing socio-environmental vulnerability in the Parnaíba basin, while exposure and sensitivity are the greater challenges in the São Francisco basin. The results of this study are crucial for the prioritization of recovery actions in degraded areas.

Suggested Citation

  • Rita Marcia da Silva Pinto Vieira & Javier Tomasella & Ana Paula Martins do Amaral Cunha & Alexandre Augusto Barbosa & João Pompeu & Yara Ferreira & Fabrícia Cristina Santos & Lincoln Muniz Alves & Je, 2023. "Socio-Environmental Vulnerability to Drought Conditions and Land Degradation: An Assessment in Two Northeastern Brazilian River Basins," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8029-:d:1147233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aldrin Martin Perez-Marin & Jhony Vendruscolo & Jhonatan Rafael Zárate-Salazar & Heithor Alexandre De Araújo Queiroz & Daniel Lima Magalhães & Rômulo S. C. Menezes & Izaias Médice Fernandes, 2022. "Monitoring Desertification Using a Small Set of Biophysical Indicators in the Brazilian Semiarid Region," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    2. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Andrade & Irving de Souza & Luiz da Silva, 2024. "The Future Sustainability of the São Francisco River Basin in Brazil: A Case Study," Sustainability, MDPI, vol. 16(13), pages 1-26, June.
    2. Henchiri, Malak & Zhang, Jiahua & Li, Shuaishuai & Essifi, Bouajila & Wilson, Kalisa, 2024. "Comprehensive assessment of drought vulnerability and resilience over North and West Africa during 1980–2100," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    3. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    4. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    5. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    6. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    7. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    8. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    9. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    10. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    11. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    12. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    13. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    14. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    15. Sehgal, Shaina & Babu, Suresh, 2021. "Economic Transformation of the Nicobar Islands Post-tsunami: A Material Import–Export Analysis," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 4(02), July.
    16. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    17. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    18. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    19. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    20. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8029-:d:1147233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.