IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p673-d1020697.html
   My bibliography  Save this article

FVM-RANS Modeling of Air Pollutants Dispersion and Traffic Emission in Dhaka City on a Suburb Scale

Author

Listed:
  • Md. Eabad Ali

    (Department of Mathematics, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh)

  • Md Farhad Hasan

    (Victoria State Government, Melbourne, VIC 3083, Australia
    School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC 3086, Australia)

  • Sadia Siddiqa

    (Department of Mathematics & Sciences, College of Humanities & Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Md. Mamun Molla

    (Department of Mathematics & Physics, North South University, Dhaka 1229, Bangladesh
    Center for Applied Scientific Computing (CASC), North South University, Dhaka 1229, Bangladesh)

  • Most. Nasrin Akhter

    (Department of Mathematics, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh)

Abstract

The present study aims to investigate the impact of air pollutants dispersion from traffic emission under the influence of wind velocity and direction considering the seasonal cycle in two major areas of Dhaka city: namely, Tejgaon and Gazipur. Carbon monoxide (CO) mass fraction has been considered as a representative element of traffic-exhausted pollutants, and the distribution of pollutants has been investigated in five different street geometries: namely, single regular and irregular, double regular and irregular, and finally, multiple irregular streets. After the grid independence test confirmation as well as numerical validation, a series of case studies has been presented to analyze the air pollutants dispersion, which mostly exists due to the traffic emission. The popular Reynolds-averaged Navier–Stokes (RANS) approach has been considered, and the finite volume method (FVM) has been applied by ANSYS Fluent TM . The k − ϵ turbulence model has been integrated from the RANS approach. It was found that the wind velocity as well as wind direction and the fluid flow fields can play a potential role on pollution dispersion in the Dhaka city street canyons and suburbs. Inhabitants residing near the single regular streets are exposed to more traffic emission than those of single irregular streets due to fewer obstacles being created by the buildings. Double regular streets have been found to be a better solution to disperse pollutants, but city dwellers in the east region of double irregular streets are exposed to a greater concentration of pollutants due to the change of wind directions and seasonal cycles. Multiple irregular streets limit the mobility of the pollutants due to the increased number of buildings, yet the inhabitants near the multi-irregular streets are likely to experience approximately 11.25 % more pollutants than other dwellers living far from the main street. The key findings of this study will provide insights on improving the urbanization plan where different geometries of streets are present and city dwellers could have less exposure to traffic-exhausted pollutants. The case studies will also provide a template layout to map pollutant exposure to identify the alarming zone and stop incessant building construction within those regions by creating real-time air quality monitoring to safeguard public safety.

Suggested Citation

  • Md. Eabad Ali & Md Farhad Hasan & Sadia Siddiqa & Md. Mamun Molla & Most. Nasrin Akhter, 2022. "FVM-RANS Modeling of Air Pollutants Dispersion and Traffic Emission in Dhaka City on a Suburb Scale," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:673-:d:1020697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longo, Riccardo & Nicastro, Patricia & Natalini, Matteo & Schito, Paolo & Mereu, Riccardo & Parente, Alessandro, 2020. "Impact of urban environment on Savonius wind turbine performance: A numerical perspective," Renewable Energy, Elsevier, vol. 156(C), pages 407-422.
    2. Hui Lin & Bingli Xu & Yuting Chen & Wenhang Li & Lan You & Jie He, 2022. "VGEs as a New Platform for Urban Modeling and Simulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    3. Marius Bodor & Alina Ceoromila & Vasile Bașliu, 2022. "Morphological and Chemical Characterization of Particulate Matter from an Indoor Measuring Campaign," Sustainability, MDPI, vol. 14(18), pages 1-10, September.
    4. Ricardo Suarez-Bertoa & Tommaso Selleri & Roberto Gioria & Anastasios D. Melas & Christian Ferrarese & Jacopo Franzetti & Bertold Arlitt & Naoki Nagura & Takaaki Hanada & Barouch Giechaskiel, 2022. "Real-Time Measurements of Formaldehyde Emissions from Modern Vehicles," Energies, MDPI, vol. 15(20), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Michna & Krzysztof Rogowski, 2022. "CFD Calculations of Average Flow Parameters around the Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    3. Tommaso Selleri & Christian Ferrarese & Jacopo Franzetti & Ricardo Suarez-Bertoa & Dario Manara, 2022. "Real-Time Measurement of NOx Emissions from Modern Diesel Vehicles Using On-Board Sensors," Energies, MDPI, vol. 15(22), pages 1-12, November.
    4. Victor Valverde & Yosuke Kondo & Yoshinori Otsuki & Torsten Krenz & Anastasios Melas & Ricardo Suarez-Bertoa & Barouch Giechaskiel, 2023. "Measurement of Gaseous Exhaust Emissions of Light-Duty Vehicles in Preparation for Euro 7: A Comparison of Portable and Laboratory Instrumentation," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.
    6. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    7. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:673-:d:1020697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.