Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using Multinomial Logistic Regression and Artificial Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Angeliki Peponi & Paulo Morgado & Jorge Trindade, 2019. "Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
- Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
- Stian Bruaset & Håkon Rygg & Sveinung Sægrov, 2018. "Reviewing the Long-Term Sustainability of Urban Water System Rehabilitation Strategies with an Alternative Approach," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yilin Zhao & Feng He & Ying Feng, 2022. "Research on the Current Situation of Employment Mobility and Retention Rate Predictions of “Double First-Class” University Graduates Based on the Random Forest and BP Neural Network Models," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
- Xuming Zeng & Zinan Wang & Hao Wang & Shengyan Zhu & Shaofeng Chen, 2023. "Progress in Drainage Pipeline Condition Assessment and Deterioration Prediction Models," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
- Wan Zhang & Ruihao Shen & Ning Xu & Haoran Zhang & Yongtu Liang, 2020. "Study on Optimization of Active Control Schemes for Considering Transient Processes in the Case of Pipeline Leakage," Energies, MDPI, vol. 13(7), pages 1-16, April.
- Juliana Mio de Souza & Paulo Morgado & Eduarda Marques da Costa & Luiz Fernando de Novaes Vianna, 2022. "Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
- Marcell Kupi & Eszter Szemerédi, 2021. "Impact of the COVID-19 on the Destination Choices of Hungarian Tourists: A Comparative Analysis," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
More about this item
Keywords
prediction model; sanitary sewer; condition assessment; multinomial logistic regression; artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5549-:d:808883. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.