IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5498-d807956.html
   My bibliography  Save this article

Dissolved Iron from Steel Slag with Its Chelating Agent Promotes Seaweed Growth

Author

Listed:
  • Paul Kwangho Kwon

    (Environment & Energy Research Division, Research Institute of Industrial Science and Technology, Pohang 37673, Korea)

  • Hyung-Suek Kim

    (Environment & Energy Research Division, Research Institute of Industrial Science and Technology, Pohang 37673, Korea)

  • Sung Woo Jeong

    (Environment & Energy Research Division, Research Institute of Industrial Science and Technology, Pohang 37673, Korea)

Abstract

Blue carbon ecosystems are crucial for carbon sequestration on a global scale. However, it is unclear how we could promote and maximize carbon sequestration. Here, we demonstrate that providing an iron source to seaweed fostered its growth through increased photosynthetic efficiency and transformed the carbon into a biomass. Firstly, we revealed that the mixture of the steel slag and DTPA eluted iron dramatically in seawater. Next, we applied the eluate of the slag-DTPA pellet to the seaweed. The results for the eluate treatment showed a 25.8% increase in the photosynthetic pigment level and a 44.9% increase in the seaweed weight. Furthermore, we confirmed no elution of potential toxic substances from the steel slag and DTPA pellet. Finally, we applied the pellet at a depth of 15 m near seaweeds and observed a 52.0% increase of carbon weight in the pellet treated group, while the non-treated group showed only a 10.3% increase for five months. This study indicated that steel slag-DTPA pellet treatment induced seaweed growth and efficiently transformed its carbon into a seaweed biomass. Thus, steel slag and its chelating agent may contribute to the promotion of sea forestation and a subsequent increase in carbon sequestration known as blue carbon.

Suggested Citation

  • Paul Kwangho Kwon & Hyung-Suek Kim & Sung Woo Jeong, 2022. "Dissolved Iron from Steel Slag with Its Chelating Agent Promotes Seaweed Growth," Sustainability, MDPI, vol. 14(9), pages 1-10, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5498-:d:807956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos M. Duarte & Iñigo J. Losada & Iris E. Hendriks & Inés Mazarrasa & Núria Marbà, 2013. "The role of coastal plant communities for climate change mitigation and adaptation," Nature Climate Change, Nature, vol. 3(11), pages 961-968, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandru-Ionuţ Petrişor & Walid Hamma & Huu Duy Nguyen & Giovanni Randazzo & Anselme Muzirafuti & Mari-Isabella Stan & Van Truong Tran & Roxana Aştefănoaiei & Quang-Thanh Bui & Dragoş-Florian Vintilă, 2020. "Degradation of Coastlines under the Pressure of Urbanization and Tourism: Evidence on the Change of Land Systems from Europe, Asia and Africa," Land, MDPI, vol. 9(8), pages 1-43, August.
    2. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    3. Aaron Sneep & Rodolphe Devillers & Katleen Robert & Arnault Le Bris & Evan Edinger, 2024. "Mapping and Characterizing Eelgrass Meadows Using UAV Imagery in Placentia Bay and Trinity Bay, Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    4. Martin Søndergaard Jørgensen & Rodrigo Labouriau & Birgit Olesen, 2019. "Seed size and burial depth influence Zostera marina L. (eelgrass) seed survival, seedling emergence and initial seedling biomass development," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    5. Ruiz-Frau, A. & Krause, T. & Marbà, N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    6. Federica Manca & Lisandro Benedetti-Cecchi & Corey J. A. Bradshaw & Mar Cabeza & Camilla Gustafsson & Alf M. Norkko & Tomas V. Roslin & David N. Thomas & Lydia White & Giovanni Strona, 2024. "Projected loss of brown macroalgae and seagrasses with global environmental change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Rebekah Grieger & Samantha J. Capon & Wade L. Hadwen & Brendan Mackey, 2020. "Between a bog and a hard place: a global review of climate change effects on coastal freshwater wetlands," Climatic Change, Springer, vol. 163(1), pages 161-179, November.
    8. Changping Zhao & Xiaojiang Xu & Yu Gong & Houming Fan & Haojia Chen, 2019. "Blue Carbon Cooperation in the Maritime Silk Road with Network Game Model and Simulation," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    9. Tianlin Zhai & Linke Wu & Yuanmeng Chen & Mian Faisal Nazir & Mingyuan Chang & Yuanbo Ma & Enxiang Cai & Guanyu Ding & Chenchen Zhao & Ling Li & Longyang Huang, 2022. "Ecological Compensation in the Context of Carbon Neutrality: A Case Involving Service Production-Transmission and Distribution-Service Consumption," Land, MDPI, vol. 11(12), pages 1-18, December.
    10. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.
    11. Jay Mar D. Quevedo & Yuta Uchiyama & Kevin Muhamad Lukman & Ryo Kohsaka, 2020. "How Blue Carbon Ecosystems Are Perceived by Local Communities in the Coral Triangle: Comparative and Empirical Examinations in the Philippines and Indonesia," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    12. Sara García-Poza & Adriana Leandro & Carla Cotas & João Cotas & João C. Marques & Leonel Pereira & Ana M. M. Gonçalves, 2020. "The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0," IJERPH, MDPI, vol. 17(18), pages 1-42, September.
    13. Gaël Mariani & Fabien Moullec & Trisha B Atwood & Beverley Clarkson & Richard T Conant & Leanne Cullen-Unsworth & Bronson Griscom & Julian Gutt & Jennifer Howard & Dorte Krause- Jensen & Sara M Leavit, 2024. "Co-benefits and trade-offs between Natural Climate Solutions and Sustainable Development Goals," Post-Print hal-04756965, HAL.
    14. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    15. González-García, Alberto & Arias, Marina & García-Tiscar, Susana & Alcorlo, Paloma & Santos-Martín, Fernando, 2022. "National blue carbon assessment in Spain using InVEST: Current state and future perspectives," Ecosystem Services, Elsevier, vol. 53(C).
    16. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    17. Rosa Molina & Giorgio Anfuso & Belén González-Aguilar & Giorgio Manno & J. Andrew G. Cooper, 2024. "Evolution of the Beach–Dune Systems in Mediterranean Andalusia (Spain) Using Two Different Proxies," Land, MDPI, vol. 13(8), pages 1-21, August.
    18. Zezheng Liu & Sergio Fagherazzi & Qiang He & Olivier Gourgue & Junhong Bai & Xinhui Liu & Chiyuan Miao & Zhan Hu & Baoshan Cui, 2024. "A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. D. P. Costa, Micheli & Wartman, Melissa & Macreadie, Peter I. & Ferns, Lawrance W. & Holden, Rhiannon L. & Ierodiaconou, Daniel & MacDonald, Kimberley J. & Mazor, Tessa K. & Morris, Rebecca & Nicholso, 2024. "Spatially explicit ecosystem accounts for coastal wetland restoration," Ecosystem Services, Elsevier, vol. 65(C).
    20. Jacob, Céline & Bernatchez, Pascal & Dupras, Jérôme & Cusson, Mathieu, 2021. "Not just an engineering problem: The role of knowledge and understanding of ecosystem services for adaptive management of coastal erosion," Ecosystem Services, Elsevier, vol. 51(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5498-:d:807956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.