IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3397-d770937.html
   My bibliography  Save this article

Soil Erosion and Deposition in a Taiwanese Watershed Using USPED

Author

Listed:
  • Walter Chen

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Wu-Hsun Wang

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Kieu Anh Nguyen

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

Soil erosion is a global problem that has been exacerbated in recent decades by global warming and the increased frequency of extreme weather events. It is also a global issue addressed by the United Nations’ Sustainable Development Goal #15 that seeks to recover degraded land and create a world free of land degradation by 2030. In this study, we used the Unit Stream Power-based Erosion Deposition (USPED) model to investigate the distribution of soil erosion and deposition in an important reservoir watershed in Taiwan, which is known to have a high risk of sediment hazard. We found the average soil erosion rate to be 136.4 Mg/ha/year using the model’s recommended m = 1.3 and n = 1.2 empirical coefficients for a combined occurrence of sheet and rill erosion. Additionally, we selected the Sule sub-watershed and the Kala area as examples to illustrate the pattern of soil erosion and deposition and their relationship to rivers, roadways, and anthropogenic activity, and 3D terrain was employed to further enhance visualization of the model output. It was estimated that 12.6% of eroded soil was deposited with a 200 m buffer of the rivers in the watershed and might be swept into the river system by the next typhoon, torrential rain, landslide, or earthquake. In comparison to previous USLE- and RUSLE-based soil erosion modeling in the same research area, our USPED modeling is unique in that it included the amount and distribution of soil deposition. This successful implementation of USPED in Taiwan establishes a new modeling alternative in addition to the widely used USLE and RUSLE models. The findings can be used to direct future erosion pin placement in the research area, allowing for improved monitoring of sediment movement and avoiding sediment hazards.

Suggested Citation

  • Walter Chen & Wu-Hsun Wang & Kieu Anh Nguyen, 2022. "Soil Erosion and Deposition in a Taiwanese Watershed Using USPED," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3397-:d:770937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dario Gioia & Antonio Minervino Amodio & Agata Maggio & Canio Alfieri Sabia, 2021. "Impact of Land Use Changes on the Erosion Processes of a Degraded Rural Landscape: An Analysis Based on High-Resolution DEMs, Historical Images, and Soil Erosion Models," Land, MDPI, vol. 10(7), pages 1-18, June.
    2. Liu, Jinxun & Sleeter, Benjiamin & Selmants, Paul C. & Diao, Jiaojiao & Zhou, Qiang & Worstell, Bruce & Moritsch, Monica, 2021. "Modeling watershed carbon dynamics as affected by land cover change and soil erosion," Ecological Modelling, Elsevier, vol. 459(C).
    3. Bor-Shiun Lin & Chun-Kai Chen & Kent Thomas & Chen-Kun Hsu & Hsing-Chuan Ho, 2019. "Improvement of the K-Factor of USLE and Soil Erosion Estimation in Shihmen Reservoir Watershed," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Chen & Kieu Anh Nguyen & Yu-Chieh Huang, 2023. "Soil Erosion in Taiwan," Agriculture, MDPI, vol. 13(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang & Kent Thomas, 2019. "Predicting Sheet and Rill Erosion of Shihmen Reservoir Watershed in Taiwan Using Machine Learning," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    2. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Using Machine Learning-Based Algorithms to Analyze Erosion Rates of a Watershed in Northern Taiwan," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    3. Sumaryanto & Sri Hery Susilowati & Fitri Nurfatriani & Herlina Tarigan & Erwidodo & Tahlim Sudaryanto & Henri Wira Perkasa, 2022. "Determinants of Farmers’ Behavior towards Land Conservation Practices in the Upper Citarum Watershed in West Java, Indonesia," Land, MDPI, vol. 11(10), pages 1-21, October.
    4. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    5. Chao Yang & Jianrong Fan & Jiali Liu & Fubao Xu & Xiyu Zhang, 2021. "Evaluating the Dominant Controls of Water Erosion in Three Dry Valley Types Using the RUSLE and Geodetector Method," Land, MDPI, vol. 10(12), pages 1-16, November.
    6. Jihui Fan & Artemis Motamedi & Majid Galoie, 2021. "Impact of C factor of USLE technique on the accuracy of soil erosion modeling in elevated mountainous area (case study: the Tibetan plateau)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12615-12630, August.
    7. Walter Chen & Kieu Anh Nguyen, 2022. "The New Island-Wide LS Factors of Taiwan, with Comparison with EU Nations," Sustainability, MDPI, vol. 14(5), pages 1-11, March.
    8. Katusiime, Juliet & Schütt, Brigitta & Mutai, Noah, 2023. "The relationship of land tenure, land use and land cover changes in Lake Victoria basin," Land Use Policy, Elsevier, vol. 126(C).
    9. Fanya Qin & Katsue Fukamachi & Shozo Shibata, 2022. "Land-Use/Landscape Pattern Changes and Related Environmental Driving Forces in a Dong Ethnic Minority Village in Southwestern China," Land, MDPI, vol. 11(3), pages 1-23, February.
    10. Kent Thomas & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Evaluation of the SEdiment Delivery Distributed (SEDD) Model in the Shihmen Reservoir Watershed," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    11. Antonio Minervino Amodio & Dario Gioia & Maria Danese & Nicola Masini & Canio Alfieri Sabia, 2023. "Land-Use Change Effects on Soil Erosion: The Case of Roman “Via Herculia” (Southern Italy)—Combining Historical Maps, Aerial Images and Soil Erosion Model," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    12. Valter S. Marques & Marcos B. Ceddia & Mauro A. H. Antunes & Daniel F. Carvalho & Jamil A. A. Anache & Dulce B. B. Rodrigues & Paulo Tarso S. Oliveira, 2019. "USLE K-Factor Method Selection for a Tropical Catchment," Sustainability, MDPI, vol. 11(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3397-:d:770937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.