IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2924-d762723.html
   My bibliography  Save this article

Zeta/Flyback Hybrid Converter for Solar Power Applications

Author

Listed:
  • Sheng-Yu Tseng

    (Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan)

  • Jun-Hao Fan

    (Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan)

Abstract

This paper presents a zeta/flyback hybrid converter with a PV array as its power source for an LED street light or digital signage application. When the PV array is used in a LED lighting system, it needs a battery charger and discharger. In order to increase the areas of application for different PV arrays, a zeta converter has been adopted as the battery charger. In addition, since a flyback converter has a simpler circuit, it is used as the battery discharger. Due to the leakage inductor of the transformer in the flyback converter, an active clamp circuit is used to recover the energy stored in leakage inductance. Zeta and flyback converters use switch integration techniques to form the proposed zeta/flyback hybrid converter. With this approach, the proposed system has less components, a lighter weight, a smaller size, and higher conversion efficiency. Finally, a prototype of the proposed hybrid converter with an output voltage of 12 V and output power of 50 W has been implemented to verify its feasibility. It is suitable for LED lighting system applications.

Suggested Citation

  • Sheng-Yu Tseng & Jun-Hao Fan, 2022. "Zeta/Flyback Hybrid Converter for Solar Power Applications," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2924-:d:762723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Chang Tsou & Ming-Tse Kuo, 2020. "Optimal Combination Design of a Light Emitting Diode Matrix Applicable to a Single-Stage Flyback Driver," Energies, MDPI, vol. 13(19), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Frivaldsky, 2021. "Advanced Perspectives for Modeling Simulation and Control of Power Electronic Systems," Energies, MDPI, vol. 14(23), pages 1-2, December.
    2. Claudio Adragna & Giovanni Gritti & Santi Agatino Rizzo & Giovanni Susinni, 2021. "Distortion Due to the Zero Current Detection Circuit in High Power Factor Quasi-Resonant Flybacks," Energies, MDPI, vol. 14(2), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2924-:d:762723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.