IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2625-d757409.html
   My bibliography  Save this article

Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies

Author

Listed:
  • Theofilos Kamperidis

    (School of Chemical Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Pavlos K. Pandis

    (School of Chemical Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Christos Argirusis

    (School of Chemical Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Gerasimos Lyberatos

    (School of Chemical Engineering, National Technical University of Athens, 157 72 Athens, Greece
    Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece)

  • Asimina Tremouli

    (School of Chemical Engineering, National Technical University of Athens, 157 72 Athens, Greece)

Abstract

The aim of this study is to examine the effect of food waste condensate concentration (400–4000 mg COD/L) on the performance of two microbial fuel cells (MFCs). Food waste condensate is produced after condensing the vapors that result from drying and shredding of household food waste (HFW). Two identical single-chamber MFCs were constructed with different cathodic assemblies based on GoreTex cloth (Cell 1) and mullite (Cell 2) materials. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) measurements were carried out to measure the maximum power output and the internal resistances of the cells. High COD removal efficiencies (>86%) were observed in all cases. Both cells performed better at low initial condensate concentrations (400–600 mg COD/L). Cell 1 achieved maximum electricity yield (1.51 mJ/g COD/L) at 500 mg COD/L and maximum coulombic efficiency (6.9%) at 400 mg COD/L. Cell 2 achieved maximum coulombic efficiency (51%) as well as maximum electricity yield (25.9 mJ/g COD/L) at 400 mg COD/L. Maximum power was observed at 600 mg COD/L for Cell 1 (14.2 mW/m 2 ) and Cell 2 (14.4 mW/m 2 ). Impedance measurements revealed that the charge transfer resistance and the solution resistance increased significantly with increasing condensate concentration in both cells.

Suggested Citation

  • Theofilos Kamperidis & Pavlos K. Pandis & Christos Argirusis & Gerasimos Lyberatos & Asimina Tremouli, 2022. "Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2625-:d:757409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2625/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Santiago M. Benites & Renny Nazario-Naveda & Daniel Delfín-Narciso & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-T, 2023. "Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    2. Theofilos Kamperidis & Asimina Tremouli & Gerasimos Lyberatos, 2023. "Architecture Optimization of a Single-Chamber Air-Cathode MFC by Increasing the Number of Cathode Electrodes," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    3. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2625-:d:757409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.