IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1545-d736980.html
   My bibliography  Save this article

Optical Performance Comparison of Different Shapes of Cavity Receiver in the Fixed Line-Focus Solar Concentrating System

Author

Listed:
  • Hai Wang

    (Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    Department of Mechanics Engineering, School of Mechanics and Automotive Engineering, Zhaoqing University, Zhaoqing 526061, China
    Department of Mechanical and Automation Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China)

  • Mengjie Song

    (Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Haoteng Li

    (Department of Energy Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

To optimize the fixed-focus solar concentrating system (FLSCS) and linear cavity receiver of better optical performance, the effects of receiver parameters (geometric shape, receiver position f , receiver internal surface absorptivity α ab , and end reflection plane reflectivity ρ r ) on the relative optical efficiency loss η re-opt , loss , the maximum value of the local concentration ratio X max , and the non-uniformity factor σ non were studied in the present study. The results showed that the increases of sun declination angle δ in the range of 0–8° have a weak effect on the η re-opt , loss . The η re-opt , loss are 2.25%, 2.72%, 12.69% and 2.62%, 3.26%, 12.85%, respectively, when the solar hour angle ω is 0°, 30°, 60° as δ = 0° and 8° for linear rectangular cavity receiver. The X max mainly depends on the energy flux distribution of first intercepted sunlight on the cavity absorber inner wall. Increasing the distance between the cavity absorber inner wall and the focal line Δ f can affect the X max . The smaller the Δ f , the greater the X max , and vice versa. The changing trend of σ non is basically consistent with that of the X max . When the f is 600, 625, 650, 675, 700 mm and the ω = 0°, the σ non are 0.832, 0.828, 0.801, 0.747, and 0.671, respectively, for linear rectangular cavity receiver. This work could establish the foundation for further research on the optical to thermal energy conversion in the FLSCS.

Suggested Citation

  • Hai Wang & Mengjie Song & Haoteng Li, 2022. "Optical Performance Comparison of Different Shapes of Cavity Receiver in the Fixed Line-Focus Solar Concentrating System," Sustainability, MDPI, vol. 14(3), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1545-:d:736980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Bać & Magdalena Nemś & Artur Nemś & Jacek Kasperski, 2019. "Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    2. Liang, Hongbo & Fan, Man & You, Shijun & Xia, Junbao & Zhang, Huan & Wang, Yaran, 2018. "An analysis of the heat loss and overheating protection of a cavity receiver with a novel movable cover for parabolic trough solar collectors," Energy, Elsevier, vol. 158(C), pages 719-729.
    3. Hai Wang & Yanxin Hu & Jinqing Peng & Mengjie Song & Haoteng Li, 2021. "Effects of Receiver Parameters on Solar Flux Distribution for Triangle Cavity Receiver in the Fixed Linear-Focus Fresnel Lens Solar Concentrator," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    4. Liang, Hongbo & Zhu, Chunguang & Fan, Man & You, Shijun & Zhang, Huan & Xia, Junbao, 2018. "Study on the thermal performance of a novel cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 222(C), pages 790-798.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    2. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    3. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    4. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    5. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    9. Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).
    10. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    11. Kexin Zhang & Ying Su & Haiyu Wang & Qian Wang & Kai Wang & Yisen Niu & Jifeng Song, 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    12. Hu, Jianjun & Zhang, Guangqiu & Zhu, Qing & Guo, Meng & Chen, Lijuan, 2019. "A self-driven mechanical ventilated solar air collector: Design and experimental study," Energy, Elsevier, vol. 189(C).
    13. Bruno, Roberto & Bevilacqua, Piero, 2022. "Heat and mass transfer for the U-value assessment of opaque walls in the Mediterranean climate: Energy implications," Energy, Elsevier, vol. 261(PA).
    14. Chen, Xinge & Liang, Hao & Wu, Gang & Feng, Chaoqing & Tao, Tao & Ji, Yaning & Ma, Qianlei & Tong, Yuxin, 2023. "Coupled heat and humidity control system of narrow-trough solar collector and solid desiccant in Chinese solar greenhouse: Analysis of optical / thermal characteristics and experimental study," Energy, Elsevier, vol. 273(C).
    15. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2023. "Sector-Specific Pathways to Sustainability: Unravelling the Most Promising Renewable Energy Options," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    16. Shinde, Tukaram U. & Dalvi, Vishwanath H. & Patil, Ramchandra G. & Mathpati, Channamallikarjun S. & Panse, Sudhir V. & Joshi, Jyeshtharaj B., 2022. "Thermal performance analysis of novel receiver for parabolic trough solar collector," Energy, Elsevier, vol. 254(PA).
    17. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    18. Mohamad, Khaled & Ferrer, P., 2021. "Thermal performance and design parameters investigation of a novel cavity receiver unit for parabolic trough concentrator," Renewable Energy, Elsevier, vol. 168(C), pages 692-704.
    19. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    20. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Hu, En-yi & Jin, Wei, 2020. "Improving the performance of large-aperture parabolic trough solar concentrator using semi-circular absorber tube with external fin and flat-plate radiation shield," Renewable Energy, Elsevier, vol. 159(C), pages 1215-1223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1545-:d:736980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.