IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1458-d735451.html
   My bibliography  Save this article

Leaf Disease Segmentation and Detection in Apple Orchards for Precise Smart Spraying in Sustainable Agriculture

Author

Listed:
  • Gary Storey

    (Department of Computer Science, Loughborough University, Loughborough LE11 3TU, UK)

  • Qinggang Meng

    (Department of Computer Science, Loughborough University, Loughborough LE11 3TU, UK)

  • Baihua Li

    (Department of Computer Science, Loughborough University, Loughborough LE11 3TU, UK)

Abstract

Reduction in chemical usage for crop management due to the environmental and health issues is a key area in achieving sustainable agricultural practices. One area in which this can be achieved is through the development of intelligent spraying systems which can identify the target for example crop disease or weeds allowing for precise spraying reducing chemical usage. Artificial intelligence and computer vision has the potential to be applied for the precise detection and classification of crops. In this paper, a study is presented that uses instance segmentation for the task of leaf and rust disease detection in apple orchards using Mask R-CNN. Three different Mask R-CNN network backbones (ResNet-50, MobileNetV3-Large and MobileNetV3-Large-Mobile) are trained and evaluated for the tasks of object detection, segmentation and disease detection. Segmentation masks on a subset of the Plant Pathology Challenge 2020 database are annotated by the authors, and these are used for the training and evaluation of the proposed Mask R-CNN based models. The study highlights that a Mask R-CNN model with a ResNet-50 backbone provides good accuracy for the task, particularly in the detection of very small rust disease objects on the leaves.

Suggested Citation

  • Gary Storey & Qinggang Meng & Baihua Li, 2022. "Leaf Disease Segmentation and Detection in Apple Orchards for Precise Smart Spraying in Sustainable Agriculture," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1458-:d:735451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1458/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    2. Rodica Gabriela Dawod & Ciprian Dobre, 2022. "Automatic Segmentation and Classification System for Foliar Diseases in Sunflower," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    3. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2022. "Rice Straw: A Waste with a Remarkable Green Energy Potential," Energies, MDPI, vol. 15(4), pages 1-15, February.
    4. Balaji Natesan & Anandakumar Singaravelan & Jia-Lien Hsu & Yi-Hsien Lin & Baiying Lei & Chuan-Ming Liu, 2022. "Channel–Spatial Segmentation Network for Classifying Leaf Diseases," Agriculture, MDPI, vol. 12(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1458-:d:735451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.