IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1077-d727375.html
   My bibliography  Save this article

3D-Printed Blocks: Thermal Performance Analysis and Opportunities for Insulating Materials

Author

Listed:
  • Tullio de Rubeis

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

The building energy balance is strongly influenced by the heat transmission losses through the envelope. This justifies the growing effort to search for innovative and high-performance insulating materials. The 3D printing process, also known as additive manufacturing, is already used in various industrial applications thanks to its ability to realize complex structures with high accuracy. It also represents an emerging and still poorly explored field in the world of “building physics”. The aim of this work is to present the design, realization, and analysis phases of a 3D-printed thermal insulating block. The performance analysis of the block was performed via theoretical and experimental approaches. The testing phase was conducted using a Hot Box specially built for this purpose, which allowed to have known, repeatable, and steady thermal conditions. The experimental phase, based on the infrared thermography technique and heat flow meter method, allowed a preliminary evaluation of the 3D-printed block performance. Moreover, to implement the concept of circular economy, the internal cavities of the block were filled with different recovered waste materials: polystyrene and wool. The results obtained have shown, although preliminarily, the potential of additive manufacturing in the field of insulating materials.

Suggested Citation

  • Tullio de Rubeis, 2022. "3D-Printed Blocks: Thermal Performance Analysis and Opportunities for Insulating Materials," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1077-:d:727375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pessoa, S. & Guimarães, A.S. & Lucas, S.S. & Simões, N., 2021. "3D printing in the construction industry - A systematic review of the thermal performance in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tullio de Rubeis & Annamaria Ciccozzi & Letizia Giusti & Dario Ambrosini, 2022. "The 3D Printing Potential for Heat Flow Optimization: Influence of Block Geometries on Heat Transfer Processes," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Monaco & Carlos Herce, 2023. "Impact of Maker Movement on the Urban Resilience Development: Assessment Methodology and Analysis of EU Research and Innovation Projects," Sustainability, MDPI, vol. 15(17), pages 1-39, August.
    2. Stelladriana Volpe & Valentino Sangiorgio & Andrea Petrella & Armando Coppola & Michele Notarnicola & Francesco Fiorito, 2021. "Building Envelope Prefabricated with 3D Printing Technology," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    3. Yorgos Spanodimitriou & Giovanni Ciampi & Luigi Tufano & Michelangelo Scorpio, 2023. "Flexible and Lightweight Solutions for Energy Improvement in Construction: A Literature Review," Energies, MDPI, vol. 16(18), pages 1-50, September.
    4. Ana S. Guimarães & João M. P. Q. Delgado & Sandra S. Lucas, 2021. "Advanced Manufacturing in Civil Engineering," Energies, MDPI, vol. 14(15), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1077-:d:727375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.