IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1051-d727025.html
   My bibliography  Save this article

Agricultural Eco-Efficiency: Challenges and Progress

Author

Listed:
  • Guofeng Wang

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Rui Shi

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Lingchen Mi

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Jinmiao Hu

    (Faculty of International Trade, Shanxi University of Finance and Economics, Taiyuan 030006, China)

Abstract

The research on agricultural eco-efficiency has become an important point to deeply understand the interaction between ecological and environmental conditions and socio-economic factors as well as realize the coordinated development of agricultural economic development and environmental protection. (1) Background: This paper attempts to provide scientific support for the healthy and stable development of the agricultural economy and the sustainable development of ecological agriculture. (2) Methods: From a comprehensive perspective, this paper systematically analyze the overall situation, development trend, key fields, and hot fields of agricultural eco-efficiency in the past two decades. It consists of two complementary parts, including systematic quantitative literature review (based on CiteSpace) and traditional literature review. (3) Results: Agricultural eco-efficiency has evolved significantly with the popularization of agricultural machinery and the wide application of science and technology in the field of agricultural ecology. Its future development relies on the advances in our knowledge on theories and hypothesis, evaluation methods, impact on “socio-economic ecological” system, and drivers and regulation of agricultural eco-efficiency. For each of these fields, we find that challenges still exist. At present, the quantitative methods and index selection are not unified. We should deeply analyze the internal and external driving force of the development and change of ecological efficiency by constructing a complete theoretical framework for the research of agricultural ecological efficiency. At the same time, new technologies and methods are needed to evaluate agricultural eco-efficiency, and a balanced consensus between the improvement of agricultural eco-efficiency and the improvement of the ecological environment should be formed through empirical research.

Suggested Citation

  • Guofeng Wang & Rui Shi & Lingchen Mi & Jinmiao Hu, 2022. "Agricultural Eco-Efficiency: Challenges and Progress," Sustainability, MDPI, vol. 14(3), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1051-:d:727025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksander Grzelak & Jakub Staniszewski & Michał Borychowski, 2020. "Income or Assets—What Determines the Approach to the Environment among Farmers in A Region in Poland?," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    2. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    3. Jiaxing Pang & Xingpeng Chen & Zilong Zhang & Hengji Li, 2016. "Measuring Eco-Efficiency of Agriculture in China," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    4. Deng, Xiangzheng & Gibson, John, 2019. "Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 394-400.
    5. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deaconu Elena-Mădălina & Pătărlăgeanu Simona Roxana & Petrescu Irina-Elena & Dinu Mihai & Sandu Andrei, 2023. "An Outline of the Links between the Sustainable Development Goals and the Transformative Elements of Formulating a Fair Agri-Food Trade Policy – A Measurable EU Achievement," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1449-1462, July.
    2. Gesevičienė, Kristina & Besusparienė, Erika, 2023. "Modelling Lithuanian family farms’ participation in agri-environmental subsidy schemes: a Neural Network Approach," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 23(02), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    2. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    3. Lin Shi & Xiaofei Shi & Fan Yang & Lixue Zhang, 2023. "Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    4. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    5. Yingbin Feng & Mengxue Ke & Ting Zhou, 2022. "Spatio-Temporal Dynamics of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    6. Changming Cheng & Jieqiong Li & Yuqing Qiu & Chunfeng Gao & Qiang Gao, 2022. "Evaluating the Spatiotemporal Characteristics of Agricultural Eco-Efficiency Alongside China’s Carbon Neutrality Targets," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    7. Wen Xiang & Jianzhong Gao, 2023. "From Agricultural Green Production to Farmers’ Happiness: A Case Study of Kiwi Growers in China," IJERPH, MDPI, vol. 20(4), pages 1-25, February.
    8. Lulu Yang & Xu Xiao & Ke Gu, 2021. "Agricultural Waste Recycling Optimization of Family Farms Based on Environmental Management Accounting in Rural China," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    9. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    10. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    11. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Zhe Zhao & Pengyu Peng & Fan Zhang & Jiayin Wang & Hongxuan Li, 2022. "The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    13. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    14. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    15. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    16. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    17. Wenqiang Jiang & Baocai Su & Shuisheng Fan, 2023. "Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    18. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    19. Tang, Kai & Li, Zhenshan & He, Chun, 2023. "Spatial distribution pattern and influencing factors of relative poverty in rural China," Innovation and Green Development, Elsevier, vol. 2(1).
    20. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1051-:d:727025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.