IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p868-d723485.html
   My bibliography  Save this article

Hazard Reduction in Deep Excavations Execution

Author

Listed:
  • Mateusz Frydrych

    (Civil Engineering Faculty, Warsaw University of Technology, 00-637 Warsaw, Poland)

  • Grzegorz Kacprzak

    (Civil Engineering Faculty, Warsaw University of Technology, 00-637 Warsaw, Poland)

  • Paweł Nowak

    (Civil Engineering Faculty, Warsaw University of Technology, 00-637 Warsaw, Poland)

Abstract

In this article, the authors consider a completely new approach in design, which is related to the use of previously un-adapted technologies known to bridge engineering in geotechnical issues for prestressing of diaphragm wall during deep excavations execution. The bridge technology described here is the prestressing of concrete structures. Hazards related to deep excavations and methods of digging them, such as the ceiling method and top&down method, are presented. Current problems in supporting deep excavation slopes are related to the use of extensive quantities of materials (such as steel struts, ground anchors, or concrete and reinforcement steel). The authors’ method helps to achieve a higher level of sustainability, which is important in a modern approach to geotechnical engineering. The non-linear arrangements of the cables according to the occurrence of the prestressing moments for a given phase are presented. Results related to numerical analysis—showing the correctness of the method and cost optimization results, showing possible savings are presented. The article is a part of the set. In the second (already published) article titled “Modern Methods of Diaphragm Walls Design”, the authors present the concept of the calculation methodology for diaphragm wall design.

Suggested Citation

  • Mateusz Frydrych & Grzegorz Kacprzak & Paweł Nowak, 2022. "Hazard Reduction in Deep Excavations Execution," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:868-:d:723485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danqing Song & Wanpeng Shi & Chengwen Wang & Lihu Dong & Xin He & Enge Wu & Jianjun Zhao & Runhu Lu, 2023. "Numerical Investigation of a Local Precise Reinforcement Method for Dynamic Stability of Rock Slope under Earthquakes Using Continuum–Discontinuum Element Method," Sustainability, MDPI, vol. 15(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:868-:d:723485. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.