IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16811-d1003760.html
   My bibliography  Save this article

Characteristics of Roof Collapse of Mining Tunnels in the Fault Fracture Zone and Distribution of the Boundary Force of the Accumulation Body

Author

Listed:
  • Guohua Zhang

    (Key Laboratory of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
    College of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Mengsen Liu

    (College of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Tao Qin

    (College of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Lei Wang

    (College of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Yanwei Duan

    (College of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Zibo Li

    (College of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

Abstract

Under the influence of coal mining, the gravel in mining tunnel sections of a fault fracture zone is prone to collapse, and the collapse accumulation body will block the tunnel, which has a very adverse influence on the safety production of coal mining and the evacuation of personnel after underground disasters. The macroscopic and mechanical characteristics of the collapse accumulation body have been studied extensively in previous works. The purpose of this paper is to provide theoretical support and reference for the rapid excavation of the tunnel blocked by the collapse accumulation body in the fault fracture zone. Taking the fault fracture zone in the tunnel as the research background, the physical characteristics and boundary mechanical characteristics of the collapse accumulation body in the fault fracture zone are studied by the method of combining on-site investigation and theoretical analysis. The results show that the force acting on the boundary on both sides of the accumulation body is passive resistance from the side wall, which is derived from the slip effect of the accumulation body slope. Similarly, the unstable boundary of the fault fracture zone caused by tunnel instability is elliptical, and the overlying load of the rescue channel to be excavated in the accumulation body is limited. On the basis of the collapse instability dimensions of the broken zone of the tunnel surrounding the rock, the calculation formulas of the height of the accumulation body and the horizontal force at the boundary were established, respectively, under two conditions of whether the collapse space was filled, and whether the curve relationship between the distribution of the horizontal force at the boundary of the accumulation body and the buried depth in the accumulation body was obtained.

Suggested Citation

  • Guohua Zhang & Mengsen Liu & Tao Qin & Lei Wang & Yanwei Duan & Zibo Li, 2022. "Characteristics of Roof Collapse of Mining Tunnels in the Fault Fracture Zone and Distribution of the Boundary Force of the Accumulation Body," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16811-:d:1003760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Wang & Lianguo Wang & Bo Ren, 2021. "Failure Mechanism Analysis and Support Technology for Roadway Tunnel in Fault Fracture Zone: A Case Study," Energies, MDPI, vol. 14(13), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadslin Frenelus & Hui Peng & Jingyu Zhang, 2022. "An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    2. Xiaoguang Qiao & Runxun Zhang & Lulu Zhang & Xinghua Zhang & Xiaogang Zhang, 2023. "Study on the Parameters of Strengthening Soft Surrounding Rock by Electric Pulse Grouting in the Mining Face," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    3. Hao Fan & Xingang Niu & Shaobo Li, 2022. "Failure Mechanism and Control Technology for Coal Roadway in Water-Rich Area," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    4. Yu Xiong & Dezhong Kong & Zhanbo Cheng & Zhijie Wen & Zhenqian Ma & Guiyi Wu & Yong Liu, 2021. "Instability Control of Roadway Surrounding Rock in Close-Distance Coal Seam Groups under Repeated Mining," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16811-:d:1003760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.