IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16633-d1000973.html
   My bibliography  Save this article

Decoupling Characteristics and Torque Analytical Model of Sharing-Suspension-Windings Bearingless Switched Reluctance Motor Considering Flux-Linkage Saturation

Author

Listed:
  • Wenmei Hao

    (The National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Jie Hao

    (The Beijing Spacecrafts, Beijing 100094, China)

  • Zhifu Wang

    (The National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China)

  • Yi Hao

    (China Academy of Railway Sciences Co., Ltd., Beijing 100081, China)

Abstract

As its name indicates, the bearingless switched reluctance motor does not have windings or permanent magnets on the rotor. This has the advantages of simple structure, high reliability and easy control. The sharing-suspension-windings bearingless switched reluctance motor inherits the above characteristics, and has obvious advantages in the research field of bearingless motors with its motor structure of decoupling torque and radial force. In this paper, the sharing-suspension-windings bearingless switched reluctance motor is taken as the research object. The finite element model of the sharing-suspension-windings bearingless switched reluctance prototype is established. The electromagnetic characteristics of the prototype are analyzed. As the premise of motor suspension, the structural decoupling of torque and radial force is analyzed and experimentally verified. Then, the flux-linkage saturation of the motor is derived at the position where the stator and rotor are completely aligned and the stator and rotor are completely unaligned. The torque model of the motor is derived based on the flux-linkage saturation, and the accuracy of the model is verified by the fitting comparison between the theory and the finite element simulation. It lays a theoretical foundation for the subsequent structure optimization design research of the sharing-suspension-windings bearingless switched reluctance motor.

Suggested Citation

  • Wenmei Hao & Jie Hao & Zhifu Wang & Yi Hao, 2022. "Decoupling Characteristics and Torque Analytical Model of Sharing-Suspension-Windings Bearingless Switched Reluctance Motor Considering Flux-Linkage Saturation," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16633-:d:1000973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud A. Gaafar & Arwa Abdelmaksoud & Mohamed Orabi & Hao Chen & Mostafa Dardeer, 2021. "Performance Investigation of Switched Reluctance Motor Driven by Quasi-Z-Source Integrated Multiport Converter with Different Switching Algorithms," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinming Xu & Yang Gu & Guangjun Liu, 2022. "Study on a Wheel Electric Drive System with SRD for Loader," Energies, MDPI, vol. 15(10), pages 1-16, May.
    2. Zheng Li & Xiaopeng Wei & Jinsong Wang & Libo Liu & Shenhui Du & Xiaoqiang Guo & Hexu Sun, 2022. "Design of a Deflection Switched Reluctance Motor Control System Based on a Flexible Neural Network," Energies, MDPI, vol. 15(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16633-:d:1000973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.