An Improved Social Force Model of Pedestrian Twice–Crossing Based on Spatial–Temporal Trajectory Characteristics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Xiaoli & Yang, Xiaoxia & Li, Yongxing & Zhang, Jihui & Kang, Yuanlei, 2021. "Obstacle avoidance in the improved social force model based on ant colony optimization during pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
- Liang, Haoyang & Du, Jie & Wong, S.C., 2021. "A Continuum model for pedestrian flow with explicit consideration of crowd force and panic effects," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 100-117.
- Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
- Yongqing Guo & Siyuan Ma & Fulu Wei & Liqun Lu & Feng Sun & Jie Wang, 2022. "Analysis of Behavior Characteristics for Pedestrian Twice-Crossing at Signalized Intersections Based on an Improved Social Force Model," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
- Juan Wei & Wenjie Fan & Yangyong Guo & Jun Hu & Yuanyuan Fang, 2020. "An extended social force model for pedestrian evacuation under disturbance fluctuation force," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-13, July.
- Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
- Mao, Qinghua & Huo, Wenteng & Li, Zunshu & Liu, Xueying & Li, Yang & Wang, Heng, 2024. "Evacuation strategies for wrecked pedestrians considering emotional contagion and safety officers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
- Ding, Ning & Zhu, Yu & Liu, Xinyan & Dong, Dapeng & Wang, Yang, 2024. "A modified social force model for crowd evacuation considering collision predicting behaviors," Applied Mathematics and Computation, Elsevier, vol. 466(C).
- Li, Zhenning & Xu, Chengzhong & Bian, Zilin, 2022. "A force-driven model for passenger evacuation in bus fires," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
- Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Yunyun Niu & Jieqiong Zhang & Yongpeng Zhang & Jianhua Xiao, 2019. "Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
- Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Kayvan Aghabayk & Alireza Soltani & Nirajan Shiwakoti, 2022. "Investigating Pedestrians’ Exit Choice with Incident Location Awareness in an Emergency in a Multi-Level Shopping Complex," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
- Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
- Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
- Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
- Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Yu, Hang & Li, Xintong & Song, Weiguo & Zhang, Jun & Li, Xudong & Xu, Han & Jiang, Kechun, 2022. "Pedestrian emergency evacuation model based on risk field under attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
- Jiaying Qin & Sasa Ma & Lei Zhang & Qianling Wang & Guoce Feng, 2022. "Modeling and Simulation for Non-Motorized Vehicle Flow on Road Based on Modified Social Force Model," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
- Liu, Jiaming & Zhang, Hui & Ding, Ning & Li, Yuntao, 2024. "A modified social force model for sudden attack evacuation based on Yerkes–Dodson law and the tendency toward low risk areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
- Dong, Shiyu & Huang, Ping & Wang, Wei, 2022. "An optimization method for evacuation guidance under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
More about this item
Keywords
pedestrian twice-crossing; improved social force model; work–energy principle; impulse–momentum principle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16615-:d:1000718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.