IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16277-d994950.html
   My bibliography  Save this article

An Investigation on the Potential of Cellulose for Soil Stabilization

Author

Listed:
  • Evangelin Ramani Sujatha

    (Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to Be University, Thanjavur 613401, Tamil Nadu, India)

  • Govindarajan Kannan

    (School of Civil Engineering, SASTRA Deemed to Be University, Thanjavur 613401, Tamil Nadu, India)

Abstract

The construction industry remains a significant contributor to global carbon emissions. Several sustainable alternatives have emerged to overcome this issue in geotechnical engineering. In this study, cellulose, an abundant biopolymer, is investigated for its potential to modify geotechnical properties favourably. Sodium carboxymethyl cellulose (NaCMC) is an anionic ether derivative of natural cellulose with good binding and moisture-retaining capacity. Experimental investigations were conducted on organic silt stabilized with 0.25% to 1.00% NaCMC, and the results indicate that unconfined compression strength (UCS) increased by 76.7% with 0.5% NaCMC treated soil after 28 days. Hydraulic conductivity (HC) of the 0.5% NaCMC treated soil decreased by 91.7% after 28 days, and the additives suppressed the compression index of the soil by 50%. The California bearing ratio (CBR) test indicated that the additive improved the subgrade strength by 33.2%, improving it from very poor to a fair sub-grade material. Microstructural analysis using a scanning electron microscope (SEM) and chemical investigation using x-ray diffraction (XRD) indicates that NaCMC’s interaction with soil did not form any new chemical compounds. However, the viscous nature of the material formed fibrous threads that bind the soil to enhance the geotechnical properties, establishing itself as a prominent stabilizer for ground improvement applications.

Suggested Citation

  • Evangelin Ramani Sujatha & Govindarajan Kannan, 2022. "An Investigation on the Potential of Cellulose for Soil Stabilization," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16277-:d:994950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Luis Pastor & Roberto Tomás & Miguel Cano & Adrián Riquelme & Erick Gutiérrez, 2019. "Evaluation of the Improvement Effect of Limestone Powder Waste in the Stabilization of Swelling Clayey Soil," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleonora Grilli & Renata Concetta Vigliotti & Antonio Fiorentino & Monica Scognamiglio & Luigi Rossetti & Thiago Assis Rodrigues Nogueira & Arun Dilipkumar Jani & Cassio Hamilton Abreu-Junior & Ludmil, 2023. "Constructed Technosols as a Soil Rebuilding Technique to Reclaim Abandoned Limestone Quarries in the Mediterranean Region: A Field Study," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    2. Paweł Strzałkowski, 2021. "Characteristics of Waste Generated in Dimension Stone Processing," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Joyce Nakayenga & Mutsuko Inui & Toshiro Hata, 2022. "Study on the Effect of Amorphous Silica from Waste Granite Powder on the Strength Development of Cement-Treated Clay for Soft Ground Improvement," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    4. Norshakila Abdul Wahab & Mohammad Jawed Roshan & Ahmad Safuan A. Rashid & Muhammad Azril Hezmi & Siti Norafida Jusoh & Nik Daud Nik Norsyahariati & Sakina Tamassoki, 2021. "Strength and Durability of Cement-Treated Lateritic Soil," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    5. Michael Z. Izzo & Marta Miletić, 2019. "Sustainable Improvement of the Crack Resistance of Cohesive Soils," Sustainability, MDPI, vol. 11(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16277-:d:994950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.