IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16250-d994477.html
   My bibliography  Save this article

Shore Power Optimal Scheduling Based on Gridding of Hybrid Energy Supply System

Author

Listed:
  • Dunzhu Xia

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
    Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Nanjing 210096, China)

  • Jiali He

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
    Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Nanjing 210096, China)

  • Fuhai Chi

    (State Grid Electric Power Research Institute, Nanjing 211106, China
    NARI Technology Co., Ltd., Nanjing 211106, China)

  • Zhenlan Dou

    (State Grid Shanghai Municipal Electric Power Company, Shanghai 200023, China)

  • Zhongguang Yang

    (State Grid Shanghai Electric Power Company Electric Power Research Institute, Shanghai 200433, China)

  • Cheng Liu

    (State Grid Electric Power Research Institute, Nanjing 211106, China
    NARI Technology Co., Ltd., Nanjing 211106, China)

Abstract

In order to reduce the environmental pollution near the port and save the cost of power supply, it is necessary to use shore power technology to power the ships that dock. This paper studies a power distribution strategy based on hybrid energy supply system. Through the establishment of wind power generation subsystem, photovoltaic power generation subsystem, and then combined with the national grid system to form a hybrid energy onshore power supply system, using the hybrid energy power supply system to power the ship. Without considering the power connection device, the whole shore power system was gridding processing. The objective function is established with the lowest cost of power supply system, and the grid node coefficient is calculated with different optimization algorithms to realize power distribution of port shore power supply system. The results showed that the power supply cost of the hybrid power supply system obtained by genetic algorithm (GA) and particle swarm optimization algorithm (PSO) is lower than the traditional power supply cost, and the power distribution is realized according to the distribution node coefficient. It provides a theoretical basis and application reference for the optimization scheme of energy management combined with port power and distributed power supply and the construction and management of new shore power.

Suggested Citation

  • Dunzhu Xia & Jiali He & Fuhai Chi & Zhenlan Dou & Zhongguang Yang & Cheng Liu, 2022. "Shore Power Optimal Scheduling Based on Gridding of Hybrid Energy Supply System," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16250-:d:994477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    2. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran, 2022. "An accurate analytical modeling of solar photovoltaic system considering Rs and Rsh under partial shaded condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2472-2481, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    2. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    3. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    4. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    5. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    6. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    8. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    9. Jingwei Zhang & Zenan Yang & Kun Ding & Li Feng & Frank Hamelmann & Xihui Chen & Yongjie Liu & Ling Chen, 2022. "Modeling of Photovoltaic Array Based on Multi-Agent Deep Reinforcement Learning Using Residuals of I–V Characteristics," Energies, MDPI, vol. 15(18), pages 1-17, September.
    10. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    11. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    12. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    13. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    14. Hossam Hassan Ali & Mohamed Ebeed & Ahmed Fathy & Francisco Jurado & Thanikanti Sudhakar Babu & Alaa A. Mahmoud, 2023. "A New Hybrid Multi-Population GTO-BWO Approach for Parameter Estimation of Photovoltaic Cells and Modules," Sustainability, MDPI, vol. 15(14), pages 1-33, July.
    15. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 15(17), pages 1-16, August.
    17. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    18. Kong, Xiangyu & Liu, Dehong & Xiao, Jie & Wang, Chengshan, 2019. "A multi-agent optimal bidding strategy in microgrids based on artificial immune system," Energy, Elsevier, vol. 189(C).
    19. Alizadeh Bidgoli, Mohsen & Ahmadian, Ali, 2022. "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach," Energy, Elsevier, vol. 239(PB).
    20. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16250-:d:994477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.