IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15126-d973640.html
   My bibliography  Save this article

Numerical Simulation of the Thermal Environment during Summer in Coastal Open Space and Research on Evaluating the Cooling Effect: A Case Study of May Fourth Square, Qingdao

Author

Listed:
  • Ying Zhang

    (Department of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
    College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China)

  • Xijun Hu

    (Department of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China)

  • Xilun Cao

    (Scientific and Technological Commission, China Urban Construction Design & Research Institute Co., Ltd., Beijing 100120, China)

  • Zheng Liu

    (College of Civil Engineering and Architecture, Qingdao Agricultural University, Qingdao 266109, China)

Abstract

Urban green space is considered an important part of urban ecological construction be-cause of the efficiency of green space in reducing ambient temperature. It was previously reported that the quantity and layout of arbors and paving are very important factors for cooling. To research the combination mode of the quantity and layout of arbors and paving able to effectively lower the temperature during the summer in a coastal open space environment where little architecture exists, we built a numerical model of heat transfer using ENVI–met numerical modeling simulation, for which the May Fourth Square in Qingdao was selected. The results showed that the ratio coverage of the arbor layer and pavement fragmentation were positively correlated with the cooling effect. We found that setting the passageway conformed to the sea breeze by arbors and close planting at the air outlet effectively reduced the site temperature. After optimizing the site’s greening layout, the cooling effect over the process of time decreased in the height direction. At the same time, the cooling effect increased before 15:00 and then reduced gradually in the time dimension. Compared to the original site, the total cooling efficiency reached 1.41 × 108 J, equaling electric energy of about 39.2 kW·h. This research solves the issue of the synergy between planting and pavement for cooling coastal open spaces in summer and provides a basis to formulate a promotion strategy for landscape design areas with similar geographical and climatic conditions.

Suggested Citation

  • Ying Zhang & Xijun Hu & Xilun Cao & Zheng Liu, 2022. "Numerical Simulation of the Thermal Environment during Summer in Coastal Open Space and Research on Evaluating the Cooling Effect: A Case Study of May Fourth Square, Qingdao," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15126-:d:973640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    2. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    3. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    4. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    5. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Jianxin Zhang & Jingyuan Zhao & Bo Pang & Sisi Liu, 2024. "Calculation of the Optimal Scale of Urban Green Space for Alleviating Surface Urban Heat Islands: A Case Study of Xi’an, China," Land, MDPI, vol. 13(7), pages 1-30, July.
    8. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    9. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    10. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    11. Jie-Sheng Lin & Faye Ya-Fen Chan & Jason Leung & Blanche Yu & Zhi-Hui Lu & Jean Woo & Timothy Kwok & Kevin Ka-Lun Lau, 2020. "Longitudinal Association of Built Environment Pattern with Physical Activity in a Community-Based Cohort of Elderly Hong Kong Chinese: A Latent Profile Analysis," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    12. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    13. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    14. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    15. Pourya Torkfar & Alessio Russo, 2023. "Assessing the Benefits of Climate-Sensitive Design with Nature-Based Solutions for Climate Change Adaptation in Urban Regeneration: A Case Study in Cheltenham, UK," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    16. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    17. Yunfang Jiang & Luyao Hou & Tiemao Shi & Qinchang Gui, 2017. "A Review of Urban Planning Research for Climate Change," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    18. Juan Diego Blanco Cadena & Graziano Salvalai & Michele Lucesoli & Enrico Quagliarini & Marco D’Orazio, 2021. "Flexible Workflow for Determining Critical Hazard and Exposure Scenarios for Assessing SLODs Risk in Urban Built Environments," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    19. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Xuan Ma & Hiroatsu Fukuda & Dian Zhou & Mengying Wang, 2019. "A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humans’ Thermal Comfort in Fo Shan City, Southern China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15126-:d:973640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.