IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15104-d973050.html
   My bibliography  Save this article

Development of the Methodology for Pipe Burst Detection in Multi-Regional Water Supply Networks Using Sensor Network Maps and Deep Neural Networks

Author

Listed:
  • Hyeong-Suk Kim

    (Department of Civil Engineering, The University of Suwon, Hwaseong-si 18323, Republic of Korea)

  • Dooyong Choi

    (Water & Wastewater Research Center, K-Water Institute, K-Water, Deajeon 34350, Republic of Korea)

  • Do-Guen Yoo

    (Department of Civil Engineering, The University of Suwon, Hwaseong-si 18323, Republic of Korea)

  • Kyoung-Pil Kim

    (Water & Wastewater Research Center, K-Water Institute, K-Water, Deajeon 34350, Republic of Korea)

Abstract

Multi-regional waterworks are large-scale facilities for supplying tap water to the public and industrial parks, and interruptions in the water supply due to leaks result in massive social and economic damages. Accordingly, real-time, around-the-clock accident monitoring is necessary to minimize secondary damage. In the present study, a section of a large-scale waterworks transmission mains system with frequent changes in its physical boundaries was defined for sensor network map-based deep learning input and output. A deep neural network (DNN)-based pressure prediction model, able to detect pipe burst accidents in real-time using short-term data collected over periods within 1 month, was developed. A sensor network map refers to a sensor-based hierarchy diagram, which is expressed using a hydraulically divided area. A hydraulically independent area can be determined using known value information (e.g., the known flow, pressure, and total head) in a complex water supply system. The input data used for the deep learning model training were: the water levels measured at 1 min intervals, flow rates, ambient pressure, pump operation state, and electric valve opening data. To verify the developed methodology, two sets of real-world data from past burst accidents in different multi-regional waterworks systems were used. The results showed that the difference between the pressure as measured by pressure meters and an estimated pressure was extremely small before an accident, and that the difference would reach a maximum at the time point when an accident occurs. It was confirmed that an approximate estimation of an accident occurrence and accident location could be estimated based on predicted pressure meter data. The developed methodology predicts a mutual influence between pressure meters and, therefore, has the advantage of not requiring past data covering long time periods. The proposed methodology can be applied immediately and used in currently operational large-scale water transmission main systems.

Suggested Citation

  • Hyeong-Suk Kim & Dooyong Choi & Do-Guen Yoo & Kyoung-Pil Kim, 2022. "Development of the Methodology for Pipe Burst Detection in Multi-Regional Water Supply Networks Using Sensor Network Maps and Deep Neural Networks," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15104-:d:973050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan-Wook Lee & Do-Guen Yoo, 2021. "Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeong-Suk Kim & Dooyong Choi & Do-Guen Yoo & Kyoung-Pil Kim, 2022. "Hyperparameter Sensitivity Analysis of Deep Learning-Based Pipe Burst Detection Model for Multiregional Water Supply Networks," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Chia-Cheng Shiu & Chih-Chung Chung & Tzuping Chiang, 2024. "Enhancing the EPANET Hydraulic Model through Genetic Algorithm Optimization of Pipe Roughness Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 323-341, January.
    3. Ryul Kim & Young Hwan Choi, 2023. "The Development of a Data-Based Leakage Pinpoint Detection Technique for Water Distribution Systems," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    4. Sanghoon Jun & Kevin E. Lansey, 2023. "Convolutional Neural Network for Burst Detection in Smart Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3729-3743, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15104-:d:973050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.