Gridding Effects on CO 2 Trapping in Deep Saline Aquifers
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mazahir Hussain & Shuang Liu & Umar Ashraf & Muhammad Ali & Wakeel Hussain & Nafees Ali & Aqsa Anees, 2022. "Application of Machine Learning for Lithofacies Prediction and Cluster Analysis Approach to Identify Rock Type," Energies, MDPI, vol. 15(12), pages 1-15, June.
- Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
- Xinyu Luo & Lingying Pan & Jie Yang, 2022. "Mineral Resource Constraints for China’s Clean Energy Development under Carbon Peaking and Carbon Neutrality Targets: Quantitative Evaluation and Scenario Analysis," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Abdulwahab Alqahtani & Xupeng He & Bicheng Yan & Hussein Hoteit, 2023. "Uncertainty Analysis of CO 2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization," Energies, MDPI, vol. 16(4), pages 1-16, February.
- Aaditya Khanal & Md Fahim Shahriar, 2022. "Physics-Based Proxy Modeling of CO 2 Sequestration in Deep Saline Aquifers," Energies, MDPI, vol. 15(12), pages 1-23, June.
- Wang, Yanwei & Dai, Zhenxue & Chen, Li & Shen, Xudong & Chen, Fangxuan & Soltanian, Mohamad Reza, 2023. "An integrated multi-scale model for CO2 transport and storage in shale reservoirs," Applied Energy, Elsevier, vol. 331(C).
More about this item
Keywords
CO 2 storage; numerical simulation; grid discretization; trapping mechanisms; deep saline aquifer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15049-:d:972766. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.