IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14863-d969100.html
   My bibliography  Save this article

Non-Intrusive Detection of Occupants’ On/Off Behaviours of Residential Air Conditioning

Author

Listed:
  • Tetsushi Ono

    (Interdisciplinary Graduate School of Science Engineering (IGSES), Kyushu University Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan)

  • Aya Hagishima

    (Interdisciplinary Graduate School of Science Engineering (IGSES), Kyushu University Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan)

  • Jun Tanimoto

    (Interdisciplinary Graduate School of Science Engineering (IGSES), Kyushu University Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan)

Abstract

Understanding occupants’ behaviours (OBs) of heating and cooling use in dwellings is essential for effectively promoting occupants’ behavioural change for energy saving and achieving efficient demand response operation. Thus, intensive research has been conducted on data collection, statistical analysis, and modelling of OBs. However, the majority of smart metres currently deployed worldwide monitor only the total household consumption rather than appliance-level load. Therefore, estimating the turn-on/off state of specific home appliances from the measured household total electricity referred to as non-intrusive load monitoring (NILM), has gained research attention. However, the current NILM methods overlook the specific features of inverter-controlled heat pumps (IHPs) used for space heating/cooling; thus, they are unsuitable for detecting OBs. This study presents a rule-based method for identifying the occupants’ intended operation states of IHPs based on a statistical analysis of load data monitored at 423 dwellings. This method detects the state of IHPs by subtracting the power of sequential-operation appliances other than IHPs from the total household power. Three time-series characteristics, including the durations of power-on/off states and power differences between power-off/on states, were used for this purpose. The performance of the proposed method was validated, indicating an F-score of 0.834.

Suggested Citation

  • Tetsushi Ono & Aya Hagishima & Jun Tanimoto, 2022. "Non-Intrusive Detection of Occupants’ On/Off Behaviours of Residential Air Conditioning," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14863-:d:969100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonglak Pahasa & Potejanasak Potejana & Issarachai Ngamroo, 2021. "Multi-Objective Decentralized Model Predictive Control for Inverter Air Conditioner Control of Indoor Temperature and Frequency Stabilization in Microgrid," Energies, MDPI, vol. 14(21), pages 1-22, October.
    2. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    3. Zexu Chen & Jing Shi & Zhaofang Song & Wangwang Yang & Zitong Zhang, 2022. "Genetic Algorithm Based Temperature-Queuing Method for Aggregated IAC Load Control," Energies, MDPI, vol. 15(2), pages 1-16, January.
    4. Schleich, Joachim & Faure, Corinne & Klobasa, Marian, 2017. "Persistence of the effects of providing feedback alongside smart metering devices on household electricity demand," Energy Policy, Elsevier, vol. 107(C), pages 225-233.
    5. Rhodes, Joshua D. & Upshaw, Charles R. & Harris, Chioke B. & Meehan, Colin M. & Walling, David A. & Navrátil, Paul A. & Beck, Ariane L. & Nagasawa, Kazunori & Fares, Robert L. & Cole, Wesley J. & Kuma, 2014. "Experimental and data collection methods for a large-scale smart grid deployment: Methods and first results," Energy, Elsevier, vol. 65(C), pages 462-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obinna, Uchechi & Joore, Peter & Wauben, Linda & Reinders, Angele, 2017. "Comparison of two residential Smart Grid pilots in the Netherlands and in the USA, focusing on energy performance and user experiences," Applied Energy, Elsevier, vol. 191(C), pages 264-275.
    2. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    3. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    4. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    5. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    7. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    8. Rusi Chen & Haiguang Liu & Chengquan Liu & Guangzheng Yu & Xuan Yang & Yue Zhou, 2022. "System Frequency Control Method Driven by Deep Reinforcement Learning and Customer Satisfaction for Thermostatically Controlled Load," Energies, MDPI, vol. 15(21), pages 1-19, October.
    9. Walter Salas-Zapata & Anny Posada-Castaño & Diana Mejía-Durango, 2021. "An explanation of the behavioral origin of moderation in the use of natural resources: a meta-synthesis study," Environment Systems and Decisions, Springer, vol. 41(4), pages 487-500, December.
    10. Meub, Lukas & Runst, Petrik & von der Leyen, Kaja, 2019. "Can APPealing and more informative bills "nudge" individuals into conserving electricity?," University of Göttingen Working Papers in Economics 372, University of Goettingen, Department of Economics, revised 2019.
    11. Loureiro, Maria & Labandeira, Xavier, 2019. "Exploring Energy Use in Retail Stores: A Field Experiment," Energy Economics, Elsevier, vol. 84(S1).
    12. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    13. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    14. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    15. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    16. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    17. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    18. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    19. Anthony M Levenda, 2019. "Mobilizing smart grid experiments: Policy mobilities and urban energy governance," Environment and Planning C, , vol. 37(4), pages 634-651, June.
    20. Curtis, John & Brazil, William & Harold, Jason, 2019. "Understanding preference heterogeneity in electricity services: the case of domestic appliance curtailment contracts," Papers WP638, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14863-:d:969100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.