IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13782-d951779.html
   My bibliography  Save this article

Study on Initial Fracture Characteristics of the Main Roof in Fully Mechanized Caving Mining of Inclined Coalbed

Author

Listed:
  • Hualei Zhang

    (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China)

  • Yonglin Xue

    (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China)

  • Yangao Li

    (Tiandi (Yulin) Mining Engineering Technology Co., Ltd., Yulin 419000, China)

  • Jiadi Yin

    (State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China)

Abstract

In view of the occurrence conditions of inclined coalbed, the deformation and failure characteristics of the main roof will affect the safe production of the working face. Therefore, the study of the deformation and failure characteristics of the main roof in the inclined coalbed has guiding significance for the control of surrounding rock. This paper takes the II1042 working face of Taoyuan Coal Mine as the research background, adopts the methods of theoretical analysis, numerical calculation, and field practice to analyze the evolutionary characteristics of the initial failure of the main roof of the working face under the background of the inclined coalbed, and explores the mechanical behavior characteristics of the working face roof during the mining of inclined coalbed. Based on the elastic thin plate theory, a mechanical model of the overlying rock roof of a large-angle coal seam is established, and the mechanical characteristics of the surrounding rock under the initial failure of the main roof under the unbalanced load are studied. The stress distribution characteristics of the lower surface are summarized, and the evolution law of the initial fracture of the main roof is summarized. According to the actual geological conditions of the II1042 working face of Taoyuan Coal Mine, the failure characteristics of the main roof and the initial breaking step distance are obtained by analysis, and the analysis results are verified by monitoring the mine pressure of each part of the target working face on site. The research results show that: ① Under the unbalanced load of the inclined coalbed, the deflection surface of the main roof of the coal seam is asymmetrical with respect to the arrangement direction of the working face, and the maximum deflection point is located at the upper middle position of the working face, namely (a/2, 1.836 b/π), and the main roof of the working face breaks for the first time when it advances to 35 m. ② With the advancement of the working face, the two long sides of the roof break first. With the deflection and deformation of the roof, the tensile stress in the middle of the main roof reaches the tensile strength of the rock and breaks, and then the two short sides of the roof break under the action of the breaking and turning of the rock, and the upper short side will break before the lower one. ③ According to the monitoring and analysis of the rock pressure at each part of the working face, it is judged that the initial pressure step distance is between 28.2 m and 34.6 m, which is consistent with the theoretical analysis results.

Suggested Citation

  • Hualei Zhang & Yonglin Xue & Yangao Li & Jiadi Yin, 2022. "Study on Initial Fracture Characteristics of the Main Roof in Fully Mechanized Caving Mining of Inclined Coalbed," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13782-:d:951779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13782/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanrui Zhang & Changyou Liu & Zhenhua Chen & Xin Yu & Kun Zhang & Huaidong Liu, 2023. "Analysis and Application of Hydraulic Fracturing to Control Hard and Stable Roof in Initial Mining Stage," Sustainability, MDPI, vol. 15(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13782-:d:951779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.