IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13360-d944928.html
   My bibliography  Save this article

Investigation on Improvement in Shear Performance of Reinforced-Concrete Beams Produced with Recycled Steel Wires from Waste Tires

Author

Listed:
  • Ceyhun Aksoylu

    (Department of Civil Engineering, Konya Technical University, Konya 42130, Turkey)

  • Yasin Onuralp Özkılıç

    (Department of Civil Engineering, Necmettin Erbakan University, Konya 42130, Turkey)

  • Marijana Hadzima-Nyarko

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 3, 31000 Osijek, Croatia)

  • Ercan Işık

    (Department of Civil Engineering, Bitlis Eren University, Bitlis 13100, Turkey)

  • Musa Hakan Arslan

    (Department of Civil Engineering, Konya Technical University, Konya 42130, Turkey)

Abstract

In parallel with the increase in vehicle sales worldwide, waste tires are becoming an increasing problem. The storage and disposal of these waste tires are critical environmental problems. Re-using these wastes in different areas instead of being disposed of is vital in preventing environmental pollution and creating new low-cost products. From this motivation, this paper investigates the properties of traditional reinforced-concrete beam with recycled steel wires (RSWT) obtained from the waste tires. RSWT were added to reinforced-concrete beam between 1% and 3% by weight with an increment of 1%. In total, 9 cubes, 12 cylinders and 12 reinforced-concrete beams were cast and tested to obtain the compressive, splitting tensile and flexural strengths, respectively. RSWT added to the concrete by 1%, 2% and 3% increased the compressive strength by 17.2%, 30.8% and 46.4%, respectively, compared to the reference concrete. In split tensile strength, 14.4%, 25.1% and 36.7% increases were observed, respectively. This showed that there was an effective increase in the compressive and tensile strength of concrete with the increase of fiber content. Although the effect of fiber content in samples with high stirrup spacing (27 cm) provides significant benefit in improving the beam behavior, the effect of fibers was more limited as the stirrup spacing decreased (20 cm and 16 cm). An approximation of over 91% was obtained between the analytical calculations and the experimental results. This shows that the analytical calculations given in the standards can be used for new experimental studies.

Suggested Citation

  • Ceyhun Aksoylu & Yasin Onuralp Özkılıç & Marijana Hadzima-Nyarko & Ercan Işık & Musa Hakan Arslan, 2022. "Investigation on Improvement in Shear Performance of Reinforced-Concrete Beams Produced with Recycled Steel Wires from Waste Tires," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13360-:d:944928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali İhsan Çelik & Yasin Onuralp Özkılıç & Özer Zeybek & Nebi Özdöner & Bassam A. Tayeh, 2022. "Performance Assessment of Fiber-Reinforced Concrete Produced with Waste Lathe Fibers," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Sardar Farhan Mushtaq & Ather Ali & Rao Arsalan Khushnood & Rana Faisal Tufail & Ali Majdi & Adnan Nawaz & Serdar Durdyev & Dumitru Doru Burduhos Nergis & Jawad Ahmad, 2022. "Effect of Bentonite as Partial Replacement of Cement on Residual Properties of Concrete Exposed to Elevated Temperatures," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmin Zuhair Murad & Hanady Al-Mahmood & Ahmad Tarawneh & Ahmad J. Aljaafreh & Ayoub AlMashaqbeh & Raghad Abdel Hadi & Rund Shabbar, 2023. "Shear Strengthening of RC Beams Using Fabric-Reinforced Cementitious Matrix, Carbon Plates, and 3D-Printed Strips," Sustainability, MDPI, vol. 15(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memduh Karalar & Yasin Onuralp Özkılıç & Ahmed Farouk Deifalla & Ceyhun Aksoylu & Musa Hakan Arslan & Mahmood Ahmad & Mohanad Muayad Sabri Sabri, 2022. "Improvement in Bending Performance of Reinforced Concrete Beams Produced with Waste Lathe Scraps," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    2. Shaoyong Han & Dongsong Zheng & Bahareh Mehdizadeh & Emad Abouel Nasr & Mayeen Uddin Khandaker & Mohammad Salman & Peyman Mehrabi, 2023. "Sustainable Design of Self-Consolidating Green Concrete with Partial Replacements for Cement through Neural-Network and Fuzzy Technique," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    3. Noor Md. Sadiqul Hasan & Nur Mohammad Nazmus Shaurdho & Md. Habibur Rahman Sobuz & Md. Montaseer Meraz & Md. Abdul Basit & Suvash Chandra Paul & Md Jihad Miah, 2023. "Rheological, Mechanical, and Micro-Structural Property Assessment of Eco-Friendly Concrete Reinforced with Waste Areca Nut Husk Fiber," Sustainability, MDPI, vol. 15(19), pages 1-29, September.
    4. Guobao Luo & Jian Zhang & Zhenhua Zhao & Mingzhi Sun, 2023. "Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Fernando Antonio da Silva Fernandes & Dayriane do Socorro de Oliveira Costa & Camilo Andrés Guerrero Martin & João Adriano Rossignolo, 2023. "Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash," Sustainability, MDPI, vol. 15(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13360-:d:944928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.