IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12245-d926513.html
   My bibliography  Save this article

Effects of Influence Parameters on Freezing Wall Temperature Field in Subway Tunnel

Author

Listed:
  • Yanxi Zhao

    (School of Civil and Architectural Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Institute of Industrial Economy and Innovation Management, Nanjing Institute of Technology, Nanjing 211167, China
    Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China)

  • Youxin Wei

    (School of Civil and Architectural Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Jingshan Jiang

    (School of Civil and Architectural Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Hua Jin

    (School of Civil and Architectural Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

In order to study the influence of different factors on the temperature field of the freezing wall of connecting passage, and to evaluate the effect of different influencing factors, four groups of analyses were carried out through three-dimensional finite element software, including the influence of brine temperature, the influence of freezing pipe diameter, the influence of freezing pipe spacing, and the influence of soil water content. The analysis shows that the finite element method based on the thermodynamics theory can better simulate the freezing temperature field and formation law of the freezing wall of each section. Among the influencing factors, the brine temperature and the freezing pipe spacing have the greatest influence on the temperature field of the freezing wall. The thickness of the freezing wall increases linearly with the increase in the freezing time. At the same time, the thickness of the freezing wall increases with the increase in the diameter of the freezing tube and the decrease in the spacing between the freezing tubes. With the decrease in brine temperature and water content, the difference of freezing wall thickness at different levels becomes larger and larger with the increase in freezing time. The influence of various factors on the freezing wall is in the order of brine temperature, freezing tube spacing, and freezing tube diameter. At present, the saltwater temperature in the freezing project of the metro shield tunnel is generally controlled at −28~−30 °C. Generally, from the perspective of actual engineering, it is better to control the spacing of freezing pipes at 1.0~1.3 m, and the diameter of the freezing pipe of the connecting channel is generally more than 89 mm. By comparing the numerical simulation value with monitoring data, the numerical calculation result is consistent with the monitoring temperature change rule.

Suggested Citation

  • Yanxi Zhao & Youxin Wei & Jingshan Jiang & Hua Jin, 2022. "Effects of Influence Parameters on Freezing Wall Temperature Field in Subway Tunnel," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12245-:d:926513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12245/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changchang Li & Zhengzhong Wang & Quanhong Liu, 2022. "Numerical Simulation of Mudstone Shield Tunnel Excavation with ABAQUS Seepage–Stress Coupling: A Case Study," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    2. Baoping Zou & Bo Hu & Jianzhong Xia & Xiaoquan Li & Qizhi Chen & Bowen Kong & Jingyuan Ma, 2023. "Study on Temporal and Spatial Variation in Soil Temperature in Artificial Ground Freezing of Subway Cross Passage," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12245-:d:926513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.