IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12047-d923448.html
   My bibliography  Save this article

Modeling Urban Freeway Rear-End Collision Risk Using Machine Learning Algorithms

Author

Listed:
  • Xiaolong Ma

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Qiang Yu

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Jianbei Liu

    (CCCC First Highway Consultants Co., Ltd., Xi’an 710065, China)

Abstract

A large amount of traffic crash investigations have shown that rear-end collisions are the main type collisions on the freeway. The purpose of this study is to investigate the rear-end collision risk on the freeway. Firstly, a new framework was proposed to develop the rear-end collision probability (RCP) model between two vehicles based on Generalized Pareto Distribution (GPD). Secondly, the freeway rear-end collision risk (F-RCR) was defined as the sum of the rear-end collision probability of each vehicle and divided into three levels which was high, median, and low rear-end collision risk. Then, different machine learning algorithms were used to model F-RCR under the condition of an unbalanced dataset. The result of the RCP model showed continuous change and can identify the dangerous condition quickly compared to the traditional models even when the speed of the leading vehicle is faster than the following vehicle. When the vehicle distribution was unbalanced on road and the speed difference between adjacent lanes and the traffic volume was large, F-RCR will increase. Multi-Layer Perceptron (MLP) was found to be more suitable for modeling F-RCR. The framework provided in this research was transferrable and can be used in the freeway proactive traffic safety management system.

Suggested Citation

  • Xiaolong Ma & Qiang Yu & Jianbei Liu, 2022. "Modeling Urban Freeway Rear-End Collision Risk Using Machine Learning Algorithms," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12047-:d:923448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12047/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12047-:d:923448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.