IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11816-d919654.html
   My bibliography  Save this article

Alfalfa Cover Crops Influence the Soil Fungal Community and Function in Apple Orchards in Arid Desert Oases in Northwest China

Author

Listed:
  • Zhenlei Wang

    (The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Plant Science, Tarim University, Alar 843300, China)

  • Weiliang Zhao

    (The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Plant Science, Tarim University, Alar 843300, China)

  • Linqiao Xi

    (College of Animal Science, Tarim University, Alar 843300, China)

Abstract

The present study investigated the effects of alfalfa cover crops on soil fungal communities and function in apple orchards in arid desert oases. A five-year apple orchard was subjected to two treatments: Intercropping with an alfalfa cover crop (A) and clean tillage (QG). The soil fungal ITS (internal transcribed spacer) region was analyzed using Illumina MiSeq high-throughput sequencing technology, and fungal function was determined using FUNGuild. Changes in the fungal community structure, diversity, and metabolic function in the 0–60 cm soil layer of the apple orchard were compared. The results showed that the alfalfa cover crops enhanced fungal richness but reduced diversity. The alfalfa cover crops improved fungal copy numbers but reduced the relative abundance of the dominant phylum, Ascomycota. Correlations between soil fungi and soil factors revealed that total nitrogen and total carbon were the most important nutrient factors in positively regulating the fungal community. The main negative factors were soil total salts and pH. The FUNGuild functional prediction showed that Ectomycorrhizal-Wood Saprotroph and Endophyte-Undefined Saprotroph only appeared in the alfalfa cover crops. The abundance of endophytes was enhanced ( p < 0.05), but the abundance of plant pathogens and wood saprotrophs decreased ( p < 0.01). Alfalfa cover crops could increase the copy numbers and richness in arid oasis apple orchards.

Suggested Citation

  • Zhenlei Wang & Weiliang Zhao & Linqiao Xi, 2022. "Alfalfa Cover Crops Influence the Soil Fungal Community and Function in Apple Orchards in Arid Desert Oases in Northwest China," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11816-:d:919654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuhang Jiang & Yasir Arafat & Puleng Letuma & Liaqat Ali & Muhammad Tayyab & Muhammad Waqas & Yanchun Li & Weiwei Lin & Sheng Lin & Wenxiong Lin, 2019. "Restoration of Long-Term Monoculture Degraded Tea Orchard by Green and Goat Manures Applications System," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junnan Ding & Bin Li & Minglong Sun & Xin Li, 2023. "Different Cropping Patterns to Restore Saline-Alkali Soils in Northeast China Affect the Abundance of Functional Genes in the Soil Nitrogen Cycle," Sustainability, MDPI, vol. 15(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin Zhang & Yutao Peng & Jingxin Wang & Longcheng Li & Danjun Yao & Aihua Zhang & Wenhua Wang & Shengjian Kuang & Heng Liao & Qing Zhu & Bangxi Zhang, 2021. "Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    2. Ting-Chen Tu & Shih-Han Lin & Fo-Ting Shen, 2021. "Enhancing Symbiotic Nitrogen Fixation and Soybean Growth through Co-Inoculation with Bradyrhizobium and Pseudomonas Isolates," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    3. Manorama Thapa & SUBHANKAR Gurung & Binghui He, 2022. "The Effects of Tea Plantation Upon the Soil Properties Based Upon the Comparative Study of India and China: A Meta – Analysis," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(4), pages 309-322, 10-2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11816-:d:919654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.