IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11733-d918595.html
   My bibliography  Save this article

Stress Evolution in Linear Cutting Tests: Laboratory and Numerical Methods

Author

Listed:
  • Jie Liu

    (Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
    School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Zhaofeng Liu

    (Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China)

  • Gangyuan Jiang

    (Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China)

Abstract

Small-scaled linear cutting tests were first performed to study the influence of penetration on fracture characteristics by a CCS (constant cross-section) cutter. The results indicate that the increase in penetration (ranging from 2.5 mm to 5.5 mm) effectively increases chip masses between cuts and further promotes cutting efficiency. To further understand the fracture mechanism for various penetrations, 3D numerical simulations were performed using PFC 3D. The numerical fracture characteristics agree well with laboratory tests. In addition, the dynamic stress evolution analysis clearly shows that the increase in rolling force frequently results in stress concentrations in rock specimens. When stresses concentrate into critical values, fractures occur. Subsequently, these fracture propagations frequently result in stress dissipations and decreases in rolling force. Thus, the relation between the fluctuations of rolling force and the rock fractures is revealed. In addition, the increase in penetration results in the promoted stress concentrations. This phenomenon can explain why the increased penetration can result in severer fractures.

Suggested Citation

  • Jie Liu & Zhaofeng Liu & Gangyuan Jiang, 2022. "Stress Evolution in Linear Cutting Tests: Laboratory and Numerical Methods," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11733-:d:918595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yabin Gao & Peizhuang Han & Fei Wang & Jing Cao & Shaoqi Zhang, 2022. "Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Mi & Chuan Wang & Xuanwen Jia & Bo Hu & Hongliang Wang & Hui Wang & Yong Zhu, 2023. "Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    2. Xiaoguang Qiao & Runxun Zhang & Lulu Zhang & Xinghua Zhang & Xiaogang Zhang, 2023. "Study on the Parameters of Strengthening Soft Surrounding Rock by Electric Pulse Grouting in the Mining Face," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11733-:d:918595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.