IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11721-d918467.html
   My bibliography  Save this article

Efficient Reuse of Railway Track Waste Materials

Author

Listed:
  • Roberto Sañudo

    (SUM+LAB Group, Universidad de Cantabria, 39005 Santander, Spain)

  • Rohit Raj Goswami

    (Instituto de InvestigaciónTecnológica, Universidad Pontificia Comillas ICAI-ICADE, 28015 Madrid, Spain)

  • Stefano Ricci

    (Dipartimento di Ingegneria Civile, Edile e Ambientale “Sapienza” Università di Roma, 00184 Rome, Italy)

  • Marina Miranda

    (Geotechnical Group, Universidad de Cantabria, 39005 Santander, Spain)

Abstract

Some of the most important materials that need recycling are generated by the construction industry. This waste has a multitude of disposal problems. In the specific case of railways, the treatment of materials taken from track maintenance and renewal operations is even more challenging. Every year, tons of track materials are replaced on rail tracks all over the world. These kilometres of rails, sleepers, and tons of ballast can be reused for other purposes. However, sometimes the environmental cost generated by their secondary use is worse than the problems involved in their disposal. This work describes a revised methodology to improve the recycling process of these waste track materials and considers the carbon footprint generated during the process along with important advantages and benefits for the economy and the environment. The reuse of these worn track materials is important to extend their life cycle and reduce environmental and economic costs in the long term. This research aims to analyse dismantled track material and evaluate possible second uses, taking into account the carbon footprint generated. Special attention has been placed on environmentally friendly uses such as fencing protected areas or green routes, among others.

Suggested Citation

  • Roberto Sañudo & Rohit Raj Goswami & Stefano Ricci & Marina Miranda, 2022. "Efficient Reuse of Railway Track Waste Materials," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11721-:d:918467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Bianchi & Stefania De Medici, 2023. "A Sustainable Adaptive Reuse Management Model for Disused Railway Cultural Heritage to Boost Local and Regional Competitiveness," Sustainability, MDPI, vol. 15(6), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Ya & Zhang Xintian & Liu Haoxiang, 2021. "Investigating the Impact of Capacity Utilization on Carbon Dioxide Emission: Evidence from China’s Iron and Steel Industry," Journal of Systems Science and Information, De Gruyter, vol. 9(6), pages 681-703, December.
    2. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    3. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    4. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    5. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    6. Shi, Qiaoling & Shan, Yuli & Zhong, Chao & Cao, Ye & Xue, Rui, 2022. "How would GVCs participation affect carbon intensity in the “Belt and Road Initiative” countries?," Energy Economics, Elsevier, vol. 111(C).
    7. Changwan Gu & Jingjing Xie & Xiaoyu Li & Xu Gao, 2023. "Levelized Cost Analysis for Blast Furnace CO 2 Capture, Utilization, and Storage Retrofit in China’s Blast Furnace–Basic Oxygen Furnace Steel Plants," Energies, MDPI, vol. 16(23), pages 1-20, November.
    8. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    9. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    10. Jiang, Wei & Chen, Yunfei, 2022. "The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods," Energy, Elsevier, vol. 246(C).
    11. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    12. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    14. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    15. Soroush Safarzadeh & Morteza Rasti-Barzoki & Jörn Altmann & Ilkyeong Moon, 2024. "A game theoretic approach for tradable white certificates regarding energy rebound and government intervention," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29643-29676, November.
    16. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    17. Sandra Kiessling & Hamidreza Gohari Darabkhani & Abdel-Hamid Soliman, 2022. "The Bio Steel Cycle: 7 Steps to Net-Zero CO 2 Emissions Steel Production," Energies, MDPI, vol. 15(23), pages 1-22, November.
    18. Fang Wan & Jizu Li & Yunfei Han & Xilong Yao, 2024. "Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
    19. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    20. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11721-:d:918467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.