IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11229-d909353.html
   My bibliography  Save this article

Research on Dynamic Characteristics of Joint of RC Frame Structure with NES

Author

Listed:
  • Haixu Yang

    (Department of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Baolei Yang

    (Department of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Haibiao Wang

    (Department of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Maohua Zhang

    (Department of Civil Engineering, Northeast Forestry University, Harbin 150040, China)

  • Songyuan Ni

    (Department of Civil Engineering, Qingdao Agricultural University, Qingdao 266109, China)

Abstract

The NES (nonlinear energy sink) is a new type of nonlinear tuned mass damper that is connected to the shock-absorbing main structure through strong nonlinear stiffness and viscous damping. The vibrational energy in the main structure is transferred to the NES oscillator by means of target energy transfer. A shaking table test of a 1:4 scaled RC (Reinforced Concrete) frame structure model with a new type of NES shock absorber was conducted to study the damping effect of the NES shock absorber, especially for the influence of joint strength and deformation. The NES used in this experiment has a relatively large nonlinear stiffness and a wide vibration absorption frequency band. The variation of reinforcement strains, node failure mode, and structural natural frequency of 1 story and two-layer joints of the model frame structure with NES were studied. The test results showed that NES could effectively reduce the strains of longitudinal reinforcement and stirrup in beams and columns and delay the plastic hinge development at the bottom and the top of the column. The frame model with NES installed has failures at the beam ends and shear failures at the nodes, realizing the seismic mechanism of solid columns and weak beams. Compared with ordinary seismic structures, the NES can effectively reduce the shear stress of concrete at the joints and alleviate the shear failure of joints. The final failure of the NES shock absorbing structure was the yielding of the steel bars at the bottom of the column and the crushing of the concrete at the foot of the column, and the connection between the column foot and the backplane became loose simultaneously. The decreasing rate of the vibration frequency declined due to the NES with varied broadband absorbing capability. It can be seen that the NES shock absorber not only has a good effect on reducing the seismic response of the structure, but more importantly, the damage of the structural nodes is greatly reduced, and therefore, the seismic capacity of the structure improved.

Suggested Citation

  • Haixu Yang & Baolei Yang & Haibiao Wang & Maohua Zhang & Songyuan Ni, 2022. "Research on Dynamic Characteristics of Joint of RC Frame Structure with NES," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11229-:d:909353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11229/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petros C. Lazaridis & Ioannis E. Kavvadias & Konstantinos Demertzis & Lazaros Iliadis & Lazaros K. Vasiliadis, 2023. "Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences," Sustainability, MDPI, vol. 15(17), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11229-:d:909353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.