IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10790-d901542.html
   My bibliography  Save this article

Design and Experimental Evaluation of Composite Magnesium Phosphate Cement-Based Coating with High Cooling Effect

Author

Listed:
  • Xiankai Quan

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Wenhua Guo

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Binxin Duan

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Jun Tian

    (School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China)

  • Xiaowei Wu

    (School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China)

Abstract

The application of surface heat reflective coatings is one of the effective measures to solve the temperature disease of concrete structures in sunlit environments. To achieve strong bonding, high durability, and good cooling characteristics, a novel inorganic reflective thermal insulation coating was prepared using magnesium phosphate cement (MPC) as the binder and reflective matrix, and titanium dioxide and glass beads as the reflective thermal insulation reinforcement functional additives. The optimum ratio of the new reflective thermal insulation coating was preferred through laboratory irradiation test, thermal conductivity test, and spectral reflectance test. The results show that MPC itself was a good reflection cooling material, and the surface and internal temperatures of concrete blocks were reduced by 7.6 °C and 6.6 °C, respectively, after using MPC as the cooling coating. When 2% titanium dioxide was added to MPC, the surface and internal temperatures were further reduced by 6.0 °C and 4.9 °C, respectively. On top of this, the surface and internal temperatures of the concrete were reduced by a further 3.9 °C and 2.2 °C when 8% glass beads were added. The bond strength of the MPCTG coating to the concrete matrix reached 2.1 MPa. Finally, the microscopic characteristics and the reflective thermal insulation mechanism of the MPCTG coating were investigated with the aid of SEM, thermo gravimetric analysis, and XRD analysis. The results show that the MPC in the MPCTG coating was well hydrated, and a large number of hydration products encapsulated the unreacted MgO particles, titanium dioxide, and glass beads, forming a dense whole with high reflection and low thermal conductivity, and the coating effectively prevented the entry of radiant heat. At the same time, the MPCTG coating was thermally stable below 70 °C. The magnesium phosphate cement-based reflective thermal insulation coating developed in this study has potential application prospects in concrete structure cooling coatings.

Suggested Citation

  • Xiankai Quan & Wenhua Guo & Binxin Duan & Jun Tian & Xiaowei Wu, 2022. "Design and Experimental Evaluation of Composite Magnesium Phosphate Cement-Based Coating with High Cooling Effect," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10790-:d:901542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao, Lei & Su, Li Fen & Tanemura, Sakae & Fisher, Craig A.J. & Zhao, Li Li & Liang, Qing & Xu, Gang, 2013. "Cost-effective nanoporous SiO2–TiO2 coatings on glass substrates with antireflective and self-cleaning properties," Applied Energy, Elsevier, vol. 112(C), pages 1198-1205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Escalante, M.C. & Fernández-Rodríguez, M. & Caballero, L.J. & Martín, F. & Gabás, M. & Ramos-Barrado, J.R., 2018. "Novel encapsulant architecture on the road to photovoltaic module power output increase," Applied Energy, Elsevier, vol. 228(C), pages 1901-1910.
    2. Natarajan Shanmugam & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Pitchandi Kasiviswanathan & Narottam Das, 2020. "Anti-Reflective Coating Materials: A Holistic Review from PV Perspective," Energies, MDPI, vol. 13(10), pages 1-93, May.
    3. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10790-:d:901542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.