IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9894-d884992.html
   My bibliography  Save this article

Analysis of Land Surface Temperature Dynamics in Islamabad by Using MODIS Remote Sensing Data

Author

Listed:
  • Noor ul Ain Binte Wasif Ali

    (Department of Environmental Science, International Islamic University, Islamabad 44000, Pakistan)

  • Sarah Amir

    (Department of Environmental Science, International Islamic University, Islamabad 44000, Pakistan)

  • Kanwar Muhammad Javed Iqbal

    (National Institute of Maritime Affairs (NIMA), Bahria University, Islamabad 44000, Pakistan)

  • Ashfaq Ahmad Shah

    (Research Center for Environment and Society, Hohai University, Nanjing 210098, China
    School of Public Administration, Hohai University, 8 Fochengxi Road, Jiangning District, Nanjing 210098, China)

  • Zafeer Saqib

    (Department of Environmental Science, International Islamic University, Islamabad 44000, Pakistan)

  • Nadia Akhtar

    (Department of Environmental Science, International Islamic University, Islamabad 44000, Pakistan)

  • Wahid Ullah

    (Department of Sociology, University of Chakwal, Chakwal 48800, Pakistan)

  • Muhammad Atiq Ur Rehman Tariq

    (College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
    College of Engineering, IT & Environment, Charles Darwin University, Darwin, NT 0810, Australia)

Abstract

The rapid pace of unattended urbanization has caused the urban heat island phenomenon, due to which the United Nations SDGs agenda 2030 calls for immediate actions for “sustainable cities and communities”. In this context, the case of the emerging metropolitan city Islamabad has been studied based on its developmental discourse vis-à-vis associated environmental problems. A time-series trend for the land surface temperature was generated by investigating the change in minimum and maximum variability against a dataset of 1960–2012 which was obtained from the Pakistan Meteorological Department, along with MODIS LST images from January 2000 to December 2015. The statistical comparison of an eight-day composite of the maximum (Tmax) and minimum (Tmin) temperature reveals an increasing trend with R 2 values of 0.2507 (Tmin) and 0.1868 (Tmax). The box plots for both the Tmin and Tmax depict changes in seasonal patterns for Islamabad, with summers becoming longer and winters becoming harsher. Moreover, the application of the Mann–Kendall test affirmed the slope of the R 2 linear trend map and showed the temperature regression in the Margalla Hills National Park and in such urban zones which had an expanded vegetative cover. These findings will act as a guide for urban planners and future researchers to maintain a standardized urban heat island and promote the concept of sustainable cities in the future course of action.

Suggested Citation

  • Noor ul Ain Binte Wasif Ali & Sarah Amir & Kanwar Muhammad Javed Iqbal & Ashfaq Ahmad Shah & Zafeer Saqib & Nadia Akhtar & Wahid Ullah & Muhammad Atiq Ur Rehman Tariq, 2022. "Analysis of Land Surface Temperature Dynamics in Islamabad by Using MODIS Remote Sensing Data," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9894-:d:884992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arshad, Salman & Ahmad, Sajid Rashid & Abbas, Sawaid & Asharf, Ather & Siddiqui, Nadia Asad & Islam, Zia ul, 2022. "Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan," Land Use Policy, Elsevier, vol. 113(C).
    2. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafia Mumtaz & Arslan Amin & Muhammad Ajmal Khan & Muhammad Daud Abdullah Asif & Zahid Anwar & Muhammad Jawad Bashir, 2023. "Impact of Green Energy Transportation Systems on Urban Air Quality: A Predictive Analysis Using Spatiotemporal Deep Learning Techniques," Energies, MDPI, vol. 16(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.
    2. Abdul Mannan & Fan Yongxiang & Tauheed Ullah Khan & Syed Moazzam Nizami & Beckline Mukete & Adnan Ahmad & Ummay Amara & Jincheng Liu & Mamoona Wali Muhammad, 2021. "Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    3. Yongguang Hu & Ali Raza & Neyha Rubab Syed & Siham Acharki & Ram L. Ray & Sajjad Hussain & Hossein Dehghanisanij & Muhammad Zubair & Ahmed Elbeltagi, 2023. "Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    4. Zhang, Shouguo & Zhang, Jianjun & Sha, Anmeng & Zhang, Yaping & Zhang, Di, 2023. "How to recognize the role of policy clusters in built-up land intensity: An empirical case of the Yangtze River Economic Belt of China," Land Use Policy, Elsevier, vol. 134(C).
    5. Xiaojing Feng & Jiahao Yu & Chuliang Xin & Tianhao Ye & Tian’ao Wang & Honglin Chen & Xuemei Zhang & Lili Zhang, 2023. "Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu," Land, MDPI, vol. 12(2), pages 1-21, February.
    6. Raziyeh Teimouri & Rasoul Ghorbani & Pooran Karbasi & Ehsan Sharifi, 2023. "Investigation of land use changes using the landscape ecology approach in Maragheh City, Iran," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(2), pages 271-284, June.
    7. Xiaopei Wu & Can Yi & Wenwen Cui & Zhi Zhang & Chen Yan & Xiangcai Xie, 2023. "Analysis of Human Disturbance Features in Natural Reserves and Empirical Research on Their Restoration: A Case Study of the Huangchulin Nature Reserve in Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    8. Yang Lu & Jiansi Yang & Song Ma, 2021. "Dynamic Changes of Local Climate Zones in the Guangdong–Hong Kong–Macao Greater Bay Area and Their Spatio-Temporal Impacts on the Surface Urban Heat Island Effect between 2005 and 2015," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    9. Nicola Ricca & Ilaria Guagliardi, 2023. "Evidences of Soil Consumption Dynamics over Space and Time by Data Analysis in a Southern Italy Urban Sprawling Area," Land, MDPI, vol. 12(5), pages 1-22, May.
    10. Evidence Chinedu Enoguanbhor, 2022. "Geospatial Assessments of Urban Green Space Protection in Abuja City, Nigeria," Eximia Journal, Plus Communication Consulting SRL, vol. 5(1), pages 177-194, July.
    11. Muhammad Sadiq Khan & Sami Ullah & Liding Chen, 2021. "Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China," Land, MDPI, vol. 10(10), pages 1-20, September.
    12. Linlin Zhang & Xianfan Shu & Liang Zhang, 2023. "Urban Sprawl and Its Multidimensional and Multiscale Measurement," Land, MDPI, vol. 12(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9894-:d:884992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.