IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9506-d879021.html
   My bibliography  Save this article

Regional Sustainability of Logistics Efficiency in China along the Belt and Road Initiative Considering Carbon Emissions

Author

Listed:
  • Chong Ye

    (School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Nuo Chen

    (School of Economics and Management, Fuzhou University, Fuzhou 350108, China)

  • Shuangyu Weng

    (School of Management, Xiamen University, Xiamen 361005, China)

  • Zeyu Xu

    (School of Finance and Business, Shanghai Normal University, Shanghai 200234, China)

Abstract

The Belt and Road Initiative puts higher requirements for the logistics industry. As one of the most energy-consuming industries, logistics is a high-carbon emission industry. Its impact on the environment cannot be ignored. In this context, how to respond to the “Belt and Road” under the concept of sustainable development, to promote the logistics industry to achieve “low consumption, low emissions, high efficiency” of regional sustainability, has become the most important development of China’s logistics industry. Therefore, based on previous research, this paper establishes an input–output index system and uses the SBM-DEA model and Malmquist index model to analyze the efficiency of low-carbon logistics in 17 provinces from 2006 to 2020, explore the overall level of the logistics and the factors affecting efficiency, and compare the efficiency in different periods and regions. Then, through the Tobit regression model, the four main factors affecting the efficiency of the logistics industry are analyzed. The results show that: (1) The highest value of low-carbon logistics efficiency of each province is 1.0000, and the lowest value is only 0.0944. The difference in logistics efficiency values among provinces is large, so there is great room for improvement and development potential. (2) From 2006 to 2020, the low-carbon logistics efficiency of the regions showed an overall upward trend, and the MI index values of each province reached or approached the DEA effective state. Among them, technological progress has a promoting effect, while scale and pure technical efficiency have hindered the efficiency growth. (3) Economic growth and industry structure have a positive effect, while energy consumption and government expenditure are negatively correlated with efficiency.

Suggested Citation

  • Chong Ye & Nuo Chen & Shuangyu Weng & Zeyu Xu, 2022. "Regional Sustainability of Logistics Efficiency in China along the Belt and Road Initiative Considering Carbon Emissions," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9506-:d:879021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    2. Jihong Chen & Zheng Wan & Fangwei Zhang & Nam-kyu Park & Xinhua He & Weiyong Yin, 2016. "Operational Efficiency Evaluation of Iron Ore Logistics at the Ports of Bohai Bay in China: Based on the PCA-DEA Model," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, January.
    3. Wen Qin & Xiaolie Qi, 2022. "Evaluation of Green Logistics Efficiency in Northwest China," Sustainability, MDPI, vol. 14(11), pages 1-14, June.
    4. Wenhui Zhao & Ye Qiu & Wei Lu & Puyu Yuan, 2022. "Input–Output Efficiency of Chinese Power Generation Enterprises and Its Improvement Direction-Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    5. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    6. Põldaru, Reet & Roots, Jüri, 2014. "A PCA–DEA approach to measure the quality of life in Estonian counties," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 65-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meiling He & Mei Yang & Xiaohui Wu & Jun Pu & Kazuhiro Izui, 2024. "Evaluating and Analyzing the Efficiency and Influencing Factors of Cold Chain Logistics in China’s Major Urban Agglomerations under Carbon Constraints," Sustainability, MDPI, vol. 16(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    2. Campoli, Jessica Suárez & Alves Júnior, Paulo Nocera & Rossato, Fabrícia Gladys Fernandes da Silva & Rebelatto, Daisy Aparecida do Nascimento, 2020. "The efficiency of Bolsa Familia Program to advance toward the Millennium Development Goals (MDGs): A human development indicator to Brazil," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Jie Wu & Xiang Lu & Dong Guo & Liang Liang, 2017. "Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1005-1021, July.
    4. Zhigang Pei & Jiaming Chen & Jun Fang & Jiangpeng Fan & Zhilan Gong & Qingying Zheng, 2023. "The Impact of “Dual-Control” Regulations on the Green Total Factor Efficiency of Shaoxing’s Industrial Sector," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    6. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    7. Dariush Khezrimotlagh & Wade D. Cook & Joe Zhu, 2021. "Number of performance measures versus number of decision making units in DEA," Annals of Operations Research, Springer, vol. 303(1), pages 529-562, August.
    8. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    9. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    10. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).
    11. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    12. Hongjun Guan & Yu Wang & Liye Dong & Aiwu Zhao, 2022. "Efficiency Decomposition Analysis of the Marine Ship Industry Chain Based on Three-Stage Super-Efficiency SBM Model—Evidence from Chinese A-Share-Listed Companies," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    13. Halkos, George & Petrou, Kleoniki Natalia, 2017. "Regional environmental efficiency in waste generation," MPRA Paper 81237, University Library of Munich, Germany.
    14. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Managi, Shunsuke, 2014. "Non-Radial Directional Performance Measurement with Undesirable Outputs," MPRA Paper 57189, University Library of Munich, Germany.
    15. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    16. Anna Łozowicka & Bartłomiej Lach, 2022. "CI-DEA: A Way to Improve the Discriminatory Power of DEA—Using the Example of the Efficiency Assessment of the Digitalization in the Life of the Generation 50+," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    17. Chen, Xiaodong & Guo, Anda & Miao, Zhuang & Zhu, Pengyu, 2024. "Assessing the performance of the transport sector within the global supply chain context: Decomposition of energy and environmental productivity," Applied Energy, Elsevier, vol. 358(C).
    18. Shuaiyu Yao & Mengmeng Chen & Dmitri Muravev & Wendi Ouyang, 2021. "Eco-Efficiency Analysis for the Russian Cities along the Northern Sea Route: A Data Envelopment Analysis Approach Using an Epsilon-Based Measure Model," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
    19. Li, Mingquan & Wang, Qi, 2014. "International environmental efficiency differences and their determinants," Energy, Elsevier, vol. 78(C), pages 411-420.
    20. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9506-:d:879021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.