IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9431-d877818.html
   My bibliography  Save this article

Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices

Author

Listed:
  • Olga Khrystoslavenko

    (Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Sauletekio al. 11, 10221 Vilnius, Lithuania)

  • Raimondas Grubliauskas

    (Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University, Sauletekio al. 11, 10221 Vilnius, Lithuania)

Abstract

Charcoal is an environmentally friendly, biodegradable, and economical material. This material is usually produced by slow pyrolysis—the heating of wood or other substances in the absence of oxygen. The aim of this study was to investigate the acoustic efficiency of charcoal and design an acoustic diffuser that utilizes charcoal. Samples of different types of tree charcoal—birch ( Betula pendula) , pine ( Pinus sylvestris), and oak ( Quercus robur) —with different thicknesses were used for the acoustic efficiency measurements. The sound absorption and sound reflection properties of charcoal were investigated. The bulk density of charcoal was measured. In this study, an impedance tube with two microphones was employed as the measurement method. The results of the impedance tube measurements showed that the charcoal samples had high sound reflection coefficients, the highest value of which was 1. The 50 mm samples of birch had a high bulk density of 473 kg/m 3 . The sample of 50 mm thick oak had the best reflection coefficient at 0.99. Reflection depended on the surface’s acoustic properties, and the sound reflection coefficient increased with the increase in the density. Charcoal measurements, due to the high reflection coefficient of the material, were used for the design of a sound diffuser, which included wooden perforated plates filled with cylindrical elements of wood charcoal.

Suggested Citation

  • Olga Khrystoslavenko & Raimondas Grubliauskas, 2022. "Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices," Sustainability, MDPI, vol. 14(15), pages 1-11, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9431-:d:877818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Astrauskas & Tomas Januševičius & Raimondas Grubliauskas, 2021. "Acoustic Panels Made of Paper Sludge and Clay Composites," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Khrystoslavenko & Tomas Astrauskas & Raimondas Grubliauskas, 2023. "Sound Absorption Properties of Charcoal Made from Wood Waste," Sustainability, MDPI, vol. 15(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Ružickij & Olga Kizinievič & Raimondas Grubliauskas & Tomas Astrauskas, 2023. "Development of Composite Acoustic Panels of Waste Tyre Textile Fibres and Paper Sludge," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    2. Olga Khrystoslavenko & Tomas Astrauskas & Raimondas Grubliauskas, 2023. "Sound Absorption Properties of Charcoal Made from Wood Waste," Sustainability, MDPI, vol. 15(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9431-:d:877818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.