IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9378-d877073.html
   My bibliography  Save this article

Intelligent Driver Assistance and Energy Management Systems of Hybrid Electric Autonomous Vehicles

Author

Listed:
  • Ziad Al-Saadi

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

  • Duong Phan Van

    (Division of Mechatronics, Mechanical Engineering Institute, Vietnam Maritime University, Haiphong 180000, Vietnam)

  • Ali Moradi Amani

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

  • Mojgan Fayyazi

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

  • Samaneh Sadat Sajjadi

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

  • Dinh Ba Pham

    (Division of Mechatronics, Mechanical Engineering Institute, Vietnam Maritime University, Haiphong 180000, Vietnam)

  • Reza Jazar

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

  • Hamid Khayyam

    (School of Engineering, RMIT University, Melbourne, VIC 3083, Australia)

Abstract

Automotive companies continue to develop integrated safety, sustainability, and reliability features that can help mitigate some of the most common driving risks associated with autonomous vehicles (AVs). Hybrid electric vehicles (HEVs) offer practical solutions to use control strategies to cut down fuel usage and emissions. AVs and HEVs are combined to take the advantages of each kind to solve the problem of wasting energy. This paper presents an intelligent driver assistance system, including adaptive cruise control (ACC) and an energy management system (EMS), for HEVs. Our proposed ACC determines the desired acceleration and safe distance with the lead car through a switched model predictive control (MPC) and a neuro-fuzzy (NF) system. The performance criteria of the switched MPC toggles between speed and distance control appropriately and its stability is mathematically proven. The EMS intelligently control the energy consumption based on ACC commands. The results show that the driving risk is extremely reduced by using ACC-MPC and ACC-NF, and the vehicle energy consumption by driver assistance system based on ACC-NF is improved by 2.6%.

Suggested Citation

  • Ziad Al-Saadi & Duong Phan Van & Ali Moradi Amani & Mojgan Fayyazi & Samaneh Sadat Sajjadi & Dinh Ba Pham & Reza Jazar & Hamid Khayyam, 2022. "Intelligent Driver Assistance and Energy Management Systems of Hybrid Electric Autonomous Vehicles," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9378-:d:877073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duong Phan & Alireza Bab-Hadiashar & Reza Hoseinnezhad & Reza N. Jazar & Abhijit Date & Ali Jamali & Dinh Ba Pham & Hamid Khayyam, 2020. "Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles," Energies, MDPI, vol. 13(7), pages 1-16, April.
    2. Phan, Duong & Bab-Hadiashar, Alireza & Lai, Chow Yin & Crawford, Bryn & Hoseinnezhad, Reza & Jazar, Reza N. & Khayyam, Hamid, 2020. "Intelligent energy management system for conventional autonomous vehicles," Energy, Elsevier, vol. 191(C).
    3. Duong Phan & Ali Moradi Amani & Mirhamed Mola & Ahmad Asgharian Rezaei & Mojgan Fayyazi & Mahdi Jalili & Dinh Ba Pham & Reza Langari & Hamid Khayyam, 2021. "Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
    2. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    3. Duong Phan & Ali Moradi Amani & Mirhamed Mola & Ahmad Asgharian Rezaei & Mojgan Fayyazi & Mahdi Jalili & Dinh Ba Pham & Reza Langari & Hamid Khayyam, 2021. "Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    4. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    5. Kawtar Rahaoui & Hamid Khayyam & Quoc Linh Ve & Aliakbar Akbarzadeh & Abhijit Date, 2021. "Renewable Thermal Energy Driven Desalination Process for a Sustainable Management of Reverse Osmosis Reject Water," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    6. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    7. Duong Phan & Alireza Bab-Hadiashar & Reza Hoseinnezhad & Reza N. Jazar & Abhijit Date & Ali Jamali & Dinh Ba Pham & Hamid Khayyam, 2020. "Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles," Energies, MDPI, vol. 13(7), pages 1-16, April.
    8. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    9. Ilyes Tegani & Okba Kraa & Haitham S. Ramadan & Mohamed Yacine Ayad, 2023. "Practical Energy Management Control of Fuel Cell Hybrid Electric Vehicles Using Artificial-Intelligence-Based Flatness Theory," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9378-:d:877073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.