IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8811-d865994.html
   My bibliography  Save this article

Open Innovation Web-Based Platform for Evaluation of Water Quality Based on Big Data Analysis

Author

Listed:
  • Xiaofang Han

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
    School of Environment and Health, Jianghan University, Wuhan 430056, China)

  • Hong Shen

    (Donghu Experimental Station of Lake Ecosystems, Cern Sub-Center of Aquatic Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China)

  • Hongqing Hu

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Jerry Gao

    (Computer Engineering Department, San Jose State University, San Jose, CA 95192, USA)

Abstract

There are many models presented that assess water quality. However, the applications of the models are limited due to the difficulty of preparing input data and interpreting model output. In this paper, we developed a Web-based platform to assist researchers in analyzing water quality. The data from sensors can be automatically imported to the platform according to the configured information of data structures. The platform also provides conventional methods and big data methods for the users to analyze water quality. Moreover, the users can choose the water quality parameters according to the water usage. The presented platform can show the model output in a text format and a graphic format, which allows for the analysis to be better understood by the user. The platform integrates the input, analysis, and output together well and brings great convenience to the research on water quality.

Suggested Citation

  • Xiaofang Han & Hong Shen & Hongqing Hu & Jerry Gao, 2022. "Open Innovation Web-Based Platform for Evaluation of Water Quality Based on Big Data Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8811-:d:865994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fereshteh Modaresi & Shahab Araghinejad, 2014. "A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4095-4111, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    2. Fereshteh Modaresi & Shahab Araghinejad & Kumars Ebrahimi, 2018. "A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasti," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 243-258, January.
    3. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    4. Mingxiang Yang & Hao Wang & Yunzhong Jiang & Xing Lu & Zhao Xu & Guangdong Sun, 2020. "GECA Proposed Ensemble–KNN Method for Improved Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 849-863, January.
    5. Vincent Paul Obade & Rattan Lal & Richard Moore, 2014. "Assessing the Accuracy of Soil and Water Quality Characterization Using Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5091-5109, November.
    6. Shiguo Xu & Tianxiang Wang & Suduan Hu, 2015. "Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model," IJERPH, MDPI, vol. 12(2), pages 1-19, February.
    7. Sebastian Gutierrez Pacheco & Robert Lagacé & Sandrine Hugron & Stéphane Godbout & Line Rochefort, 2021. "Estimation of Daily Water Table Level with Bimonthly Measurements in Restored Ombrotrophic Peatland," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    8. Haris Doukas & Panos Xidonas & Nikos Mastromichalakis, 2022. "How Successful are Energy Efficiency Investments? A Comparative Analysis for Classification & Performance Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 579-598, February.
    9. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8811-:d:865994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.