IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8760-d865186.html
   My bibliography  Save this article

Supply Chain Design for Blending Technologies

Author

Listed:
  • Tamás Bányai

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Péter Veres

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

Abstract

When optimizing blending technologies, the main objective is to determine the right mixing ratio of the raw materials, depending on the different qualities and costs of the raw materials available. It can be concluded that research is mainly focused on answering technological questions, and only very few studies take into account the logistics processes related to blending technologies, their design, cost-efficiency, utilization and sustainability including energy efficiency and environmental impact. Based on this fact, within the frame of this research the authors describe a new approach, extending the basic model of blending problems by adding new supply chain efficiency-related components that makes it possible to take logistics parameters related to the raw materials supply (available stocks, batch sizes, transport and storage costs, supply chain structure) into consideration. A mathematical model of this supply chain optimization problem for blending technologies is described including routing and assignment problems in the supply chain, while technological objectives are also taken into consideration as technological objective functions and constraints. The optimization problem described in the model is a problem with non-deterministic polynomial-time hardness (NP-hard), which means that there are no known efficient analytical methods to solve the logistics-related supply chain optimization of blending technologies. As a solution algorithm, the authors have used an evolutive solver and a new metrics, which improved the efficiency of the comparison of distances between solutions of routing problems represented by permutation arrays. The scenario analysis, which focuses on the integrated optimization of technological and logistics problems validates the model and evaluates the solution algorithm and the new metrics. Using the mentioned algorithm, the supply chain processes of the blending technologies can be improved from availability, efficiency, sustainability point of view.

Suggested Citation

  • Tamás Bányai & Péter Veres, 2022. "Supply Chain Design for Blending Technologies," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8760-:d:865186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Wang & Weidong Huang & Xueyan Liu & Peng Lin, 2022. "Aging Characteristics of Rubber Modified Bitumen Mixed with Sulfur after Terminal Blend Process," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8760-:d:865186. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.